On the Cauchy Problem

On the Cauchy Problem
Author :
Publisher : Academic Press
Total Pages : 186
Release :
ISBN-10 : 9781483269061
ISBN-13 : 148326906X
Rating : 4/5 (61 Downloads)

Book Synopsis On the Cauchy Problem by : Sigeru Mizohata

Download or read book On the Cauchy Problem written by Sigeru Mizohata and published by Academic Press. This book was released on 2014-05-10 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Notes and Reports in Mathematics in Science and Engineering, Volume 3: On the Cauchy Problem focuses on the processes, methodologies, and mathematical approaches to Cauchy problems. The publication first elaborates on evolution equations, Lax-Mizohata theorem, and Cauchy problems in Gevrey class. Discussions focus on fundamental proposition, proof of theorem 4, Gevrey property in t of solutions, basic facts on pseudo-differential, and proof of theorem 3. The book then takes a look at micro-local analysis in Gevrey class, including proof and consequences of theorem 1. The manuscript examines Schrödinger type equations, as well as general view-points on evolution equations. Numerical representations and analyses are provided in the explanation of these type of equations. The book is a valuable reference for mathematicians and researchers interested in the Cauchy problem.

The Cauchy Problem in Kinetic Theory

The Cauchy Problem in Kinetic Theory
Author :
Publisher : SIAM
Total Pages : 246
Release :
ISBN-10 : 9780898713671
ISBN-13 : 0898713676
Rating : 4/5 (71 Downloads)

Book Synopsis The Cauchy Problem in Kinetic Theory by : Robert T. Glassey

Download or read book The Cauchy Problem in Kinetic Theory written by Robert T. Glassey and published by SIAM. This book was released on 1996-01-01 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studies the basic equations of kinetic theory in all of space, and contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations. This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although describing very different phenomena, these equations share the same streaming term.

Lectures on Cauchy's Problem in Linear Partial Differential Equations

Lectures on Cauchy's Problem in Linear Partial Differential Equations
Author :
Publisher :
Total Pages : 336
Release :
ISBN-10 : UCAL:$B100290
ISBN-13 :
Rating : 4/5 (90 Downloads)

Book Synopsis Lectures on Cauchy's Problem in Linear Partial Differential Equations by : Jacques Hadamard

Download or read book Lectures on Cauchy's Problem in Linear Partial Differential Equations written by Jacques Hadamard and published by . This book was released on 1923 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Abstract Cauchy Problems

Abstract Cauchy Problems
Author :
Publisher : CRC Press
Total Pages : 259
Release :
ISBN-10 : 9781420035490
ISBN-13 : 1420035495
Rating : 4/5 (90 Downloads)

Book Synopsis Abstract Cauchy Problems by : Irina V. Melnikova

Download or read book Abstract Cauchy Problems written by Irina V. Melnikova and published by CRC Press. This book was released on 2001-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularizat

The Cauchy Problem in General Relativity

The Cauchy Problem in General Relativity
Author :
Publisher : European Mathematical Society
Total Pages : 310
Release :
ISBN-10 : 3037190531
ISBN-13 : 9783037190531
Rating : 4/5 (31 Downloads)

Book Synopsis The Cauchy Problem in General Relativity by : Hans Ringström

Download or read book The Cauchy Problem in General Relativity written by Hans Ringström and published by European Mathematical Society. This book was released on 2009 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.

Vector-valued Laplace Transforms and Cauchy Problems

Vector-valued Laplace Transforms and Cauchy Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 526
Release :
ISBN-10 : 9783034850759
ISBN-13 : 3034850751
Rating : 4/5 (59 Downloads)

Book Synopsis Vector-valued Laplace Transforms and Cauchy Problems by : Wolfgang Arendt

Download or read book Vector-valued Laplace Transforms and Cauchy Problems written by Wolfgang Arendt and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear evolution equations in Banach spaces have seen important developments in the last two decades. This is due to the many different applications in the theory of partial differential equations, probability theory, mathematical physics, and other areas, and also to the development of new techniques. One important technique is given by the Laplace transform. It played an important role in the early development of semigroup theory, as can be seen in the pioneering monograph by Rille and Phillips [HP57]. But many new results and concepts have come from Laplace transform techniques in the last 15 years. In contrast to the classical theory, one particular feature of this method is that functions with values in a Banach space have to be considered. The aim of this book is to present the theory of linear evolution equations in a systematic way by using the methods of vector-valued Laplace transforms. It is simple to describe the basic idea relating these two subjects. Let A be a closed linear operator on a Banach space X. The Cauchy problern defined by A is the initial value problern (t 2 0), (CP) {u'(t) = Au(t) u(O) = x, where x E X is a given initial value. If u is an exponentially bounded, continuous function, then we may consider the Laplace transform 00 u(>. ) = 1 e-). . tu(t) dt of u for large real>. .

Stochastic Cauchy Problems in Infinite Dimensions

Stochastic Cauchy Problems in Infinite Dimensions
Author :
Publisher : CRC Press
Total Pages : 160
Release :
ISBN-10 : 9781498785853
ISBN-13 : 1498785859
Rating : 4/5 (53 Downloads)

Book Synopsis Stochastic Cauchy Problems in Infinite Dimensions by : Irina V. Melnikova

Download or read book Stochastic Cauchy Problems in Infinite Dimensions written by Irina V. Melnikova and published by CRC Press. This book was released on 2016-04-27 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.