Smoothness Priors Analysis of Time Series

Smoothness Priors Analysis of Time Series
Author :
Publisher : Springer Science & Business Media
Total Pages : 265
Release :
ISBN-10 : 9781461207610
ISBN-13 : 1461207614
Rating : 4/5 (10 Downloads)

Book Synopsis Smoothness Priors Analysis of Time Series by : Genshiro Kitagawa

Download or read book Smoothness Priors Analysis of Time Series written by Genshiro Kitagawa and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.

New Directions in Time Series Analysis

New Directions in Time Series Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 391
Release :
ISBN-10 : 9781461392965
ISBN-13 : 1461392969
Rating : 4/5 (65 Downloads)

Book Synopsis New Directions in Time Series Analysis by : David Brillinger

Download or read book New Directions in Time Series Analysis written by David Brillinger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications NEW DIRECTIONS IN TIME SERIES ANALYSIS, PART II is based on the proceedings of the IMA summer program "New Directions in Time Series Analysis. " We are grateful to David Brillinger, Peter Caines, John Geweke, Emanuel Parzen, Murray Rosenblatt, and Murad Taqqu for organizing the program and we hope that the remarkable excitement and enthusiasm of the participants in this interdisciplinary effort are communicated to the reader. A vner Friedman Willard Miller, Jr. PREFACE Time Series Analysis is truly an interdisciplinary field because development of its theory and methods requires interaction between the diverse disciplines in which it is applied. To harness its great potential, strong interaction must be encouraged among the diverse community of statisticians and other scientists whose research involves the analysis of time series data. This was the goal of the IMA Workshop on "New Directions in Time Series Analysis. " The workshop was held July 2-July 27, 1990 and was organized by a committee consisting of Emanuel Parzen (chair), David Brillinger, Murray Rosenblatt, Murad S. Taqqu, John Geweke, and Peter Caines. Constant guidance and encouragement was provided by Avner Friedman, Director of the IMA, and his very helpful and efficient staff. The workshops were organized by weeks. It may be of interest to record the themes that were announced in the IMA newsletter describing the workshop: l.

Smoothness Priors Analysis of Time Series

Smoothness Priors Analysis of Time Series
Author :
Publisher : Springer Science & Business Media
Total Pages : 284
Release :
ISBN-10 : 0387948198
ISBN-13 : 9780387948195
Rating : 4/5 (98 Downloads)

Book Synopsis Smoothness Priors Analysis of Time Series by : Genshiro Kitagawa

Download or read book Smoothness Priors Analysis of Time Series written by Genshiro Kitagawa and published by Springer Science & Business Media. This book was released on 1996-08-09 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.

Handbook of Brain Connectivity

Handbook of Brain Connectivity
Author :
Publisher : Springer
Total Pages : 525
Release :
ISBN-10 : 9783540715122
ISBN-13 : 3540715126
Rating : 4/5 (22 Downloads)

Book Synopsis Handbook of Brain Connectivity by : Viktor K. Jirsa

Download or read book Handbook of Brain Connectivity written by Viktor K. Jirsa and published by Springer. This book was released on 2007-08-16 with total page 525 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our contemporary understanding of brain function is deeply rooted in the ideas of the nonlinear dynamics of distributed networks. Cognition and motor coordination seem to arise from the interactions of local neuronal networks, which themselves are connected in large scales across the entire brain. The spatial architectures between various scales inevitably influence the dynamics of the brain and thereby its function. But how can we integrate brain connectivity amongst these structural and functional domains? Our Handbook provides an account of the current knowledge on the measurement, analysis and theory of the anatomical and functional connectivity of the brain. All contributors are leading experts in various fields concerning structural and functional brain connectivity. In the first part of the Handbook, the chapters focus on an introduction and discussion of the principles underlying connected neural systems. The second part introduces the currently available non-invasive technologies for measuring structural and functional connectivity in the brain. Part three provides an overview of the analysis techniques currently available and highlights new developments. Part four introduces the application and translation of the concepts of brain connectivity to behavior, cognition and the clinical domain.

Advances in Processing and Pattern Analysis of Biological Signals

Advances in Processing and Pattern Analysis of Biological Signals
Author :
Publisher : Springer Science & Business Media
Total Pages : 429
Release :
ISBN-10 : 9781475790986
ISBN-13 : 1475790988
Rating : 4/5 (86 Downloads)

Book Synopsis Advances in Processing and Pattern Analysis of Biological Signals by : I. Gath

Download or read book Advances in Processing and Pattern Analysis of Biological Signals written by I. Gath and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been rapid progress in the development of signal processing in general, and more specifically in the application of signal processing and pattern analysis to biological signals. Techniques, such as parametric and nonparametric spectral estimation, higher order spectral estimation, time-frequency methods, wavelet transform, and identifi cation of nonlinear systems using chaos theory, have been successfully used to elucidate basic mechanisms of physiological and mental processes. Similarly, biological signals recorded during daily medical practice for clinical diagnostic procedures, such as electroen cephalograms (EEG), evoked potentials (EP), electromyograms (EMG) and electrocardio grams (ECG), have greatly benefitted from advances in signal processing. In order to update researchers, graduate students, and clinicians, on the latest developments in the field, an International Symposium on Processing and Pattern Analysis of Biological Signals was held at the Technion-Israel Institute of Technology, during March 1995. This book contains 27 papers delivered during the symposium. The book follows the five sessions of the symposium. The first section, Processing and Pattern Analysis of Normal and Pathological EEG, accounts for some of the latest developments in the area of EEG processing, namely: time varying parametric modeling; non-linear dynamic modeling of the EEG using chaos theory; Markov analysis; delay estimation using adaptive least-squares filtering; and applications to the analysis of epileptic EEG, EEG recorded from psychiatric patients, and sleep EEG.

Statistical Methods in Control & Signal Processing

Statistical Methods in Control & Signal Processing
Author :
Publisher : CRC Press
Total Pages : 574
Release :
ISBN-10 : 9781482273748
ISBN-13 : 1482273748
Rating : 4/5 (48 Downloads)

Book Synopsis Statistical Methods in Control & Signal Processing by : Tohru Katayama

Download or read book Statistical Methods in Control & Signal Processing written by Tohru Katayama and published by CRC Press. This book was released on 2018-10-08 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting statistical and stochastic methods for the analysis and design of technological systems in engineering and applied areas, this work documents developments in statistical modelling, identification, estimation and signal processing. The book covers such topics as subspace methods, stochastic realization, state space modelling, and identification and parameter estimation.

Applied Bayesian Hierarchical Methods

Applied Bayesian Hierarchical Methods
Author :
Publisher : CRC Press
Total Pages : 606
Release :
ISBN-10 : 9781584887218
ISBN-13 : 1584887214
Rating : 4/5 (18 Downloads)

Book Synopsis Applied Bayesian Hierarchical Methods by : Peter D. Congdon

Download or read book Applied Bayesian Hierarchical Methods written by Peter D. Congdon and published by CRC Press. This book was released on 2010-05-19 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of Markov chain Monte Carlo (MCMC) methods for estimating hierarchical models involves complex data structures and is often described as a revolutionary development. An intermediate-level treatment of Bayesian hierarchical models and their applications, Applied Bayesian Hierarchical Methods demonstrates the advantages of a Bayesian approach