Machine Learning for Cyber Physical Systems

Machine Learning for Cyber Physical Systems
Author :
Publisher : Springer
Total Pages : 144
Release :
ISBN-10 : 9783662584859
ISBN-13 : 3662584859
Rating : 4/5 (59 Downloads)

Book Synopsis Machine Learning for Cyber Physical Systems by : Jürgen Beyerer

Download or read book Machine Learning for Cyber Physical Systems written by Jürgen Beyerer and published by Springer. This book was released on 2018-12-17 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Open Access proceedings presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Karlsruhe, October 23-24, 2018. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.

Real-Time Applications of Machine Learning in Cyber-Physical Systems

Real-Time Applications of Machine Learning in Cyber-Physical Systems
Author :
Publisher : IGI Global
Total Pages : 307
Release :
ISBN-10 : 9781799893103
ISBN-13 : 1799893103
Rating : 4/5 (03 Downloads)

Book Synopsis Real-Time Applications of Machine Learning in Cyber-Physical Systems by : Easwaran, Balamurugan

Download or read book Real-Time Applications of Machine Learning in Cyber-Physical Systems written by Easwaran, Balamurugan and published by IGI Global. This book was released on 2022-03-11 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technological advancements of recent decades have reshaped the way people socialize, work, learn, and ultimately live. The use of cyber-physical systems (CPS) specifically have helped people lead their lives with greater control and freedom. CPS domains have great societal significance, providing crucial assistance in industries ranging from security to healthcare. At the same time, machine learning (ML) algorithms are known for being substantially efficient, high performing, and have become a real standard due to greater accessibility, and now more than ever, multidisciplinary applications of ML for CPS have become a necessity to help uncover constructive solutions for real-world problems. Real-Time Applications of Machine Learning in Cyber-Physical Systems provides a relevant theoretical framework and the most recent empirical findings on various real-time applications of machine learning in cyber-physical systems. Covering topics like intrusion detection systems, predictive maintenance, and seizure prediction, this book is an essential resource for researchers, machine learning professionals, independent researchers, scholars, scientists, libraries, and academicians.

Deep Learning Applications for Cyber-Physical Systems

Deep Learning Applications for Cyber-Physical Systems
Author :
Publisher : IGI Global
Total Pages : 293
Release :
ISBN-10 : 9781799881636
ISBN-13 : 1799881636
Rating : 4/5 (36 Downloads)

Book Synopsis Deep Learning Applications for Cyber-Physical Systems by : Mundada, Monica R.

Download or read book Deep Learning Applications for Cyber-Physical Systems written by Mundada, Monica R. and published by IGI Global. This book was released on 2021-12-17 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big data generates around us constantly from daily business, custom use, engineering, and science activities. Sensory data is collected from the internet of things (IoT) and cyber-physical systems (CPS). Merely storing such a massive amount of data is meaningless, as the key point is to identify, locate, and extract valuable knowledge from big data to forecast and support services. Such extracted valuable knowledge is usually referred to as smart data. It is vital to providing suitable decisions in business, science, and engineering applications. Deep Learning Applications for Cyber-Physical Systems provides researchers a platform to present state-of-the-art innovations, research, and designs while implementing methodological and algorithmic solutions to data processing problems and designing and analyzing evolving trends in health informatics and computer-aided diagnosis in deep learning techniques in context with cyber physical systems. Covering topics such as smart medical systems, intrusion detection systems, and predictive analytics, this text is essential for computer scientists, engineers, practitioners, researchers, students, and academicians, especially those interested in the areas of internet of things, machine learning, deep learning, and cyber-physical systems.

Artificial Intelligence Paradigms for Smart Cyber-Physical Systems

Artificial Intelligence Paradigms for Smart Cyber-Physical Systems
Author :
Publisher : Engineering Science Reference
Total Pages : 315
Release :
ISBN-10 : 179985101X
ISBN-13 : 9781799851011
Rating : 4/5 (1X Downloads)

Book Synopsis Artificial Intelligence Paradigms for Smart Cyber-Physical Systems by : Ashish Kumar Luhach

Download or read book Artificial Intelligence Paradigms for Smart Cyber-Physical Systems written by Ashish Kumar Luhach and published by Engineering Science Reference. This book was released on 2020-11-13 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses upon the recent advances in the realization of Artificial Intelligence-based approaches towards affecting secure Cyber-Physical Systems. It features contributions pertaining to this multidisciplinary paradigm, in particular, in its application to building sustainable space by investigating state-of-art research issues, applications and achievements in the field of Computational Intelligence Paradigms for Cyber-Physical Systems"--

Machine Learning and Deep Learning in Real-Time Applications

Machine Learning and Deep Learning in Real-Time Applications
Author :
Publisher : IGI Global
Total Pages : 344
Release :
ISBN-10 : 9781799830979
ISBN-13 : 1799830977
Rating : 4/5 (79 Downloads)

Book Synopsis Machine Learning and Deep Learning in Real-Time Applications by : Mahrishi, Mehul

Download or read book Machine Learning and Deep Learning in Real-Time Applications written by Mahrishi, Mehul and published by IGI Global. This book was released on 2020-04-24 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.

Deep Learning Applications for Cyber Security

Deep Learning Applications for Cyber Security
Author :
Publisher : Springer
Total Pages : 260
Release :
ISBN-10 : 9783030130572
ISBN-13 : 3030130576
Rating : 4/5 (72 Downloads)

Book Synopsis Deep Learning Applications for Cyber Security by : Mamoun Alazab

Download or read book Deep Learning Applications for Cyber Security written by Mamoun Alazab and published by Springer. This book was released on 2019-08-14 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cybercrime remains a growing challenge in terms of security and privacy practices. Working together, deep learning and cyber security experts have recently made significant advances in the fields of intrusion detection, malicious code analysis and forensic identification. This book addresses questions of how deep learning methods can be used to advance cyber security objectives, including detection, modeling, monitoring and analysis of as well as defense against various threats to sensitive data and security systems. Filling an important gap between deep learning and cyber security communities, it discusses topics covering a wide range of modern and practical deep learning techniques, frameworks and development tools to enable readers to engage with the cutting-edge research across various aspects of cyber security. The book focuses on mature and proven techniques, and provides ample examples to help readers grasp the key points.

Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis

Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis
Author :
Publisher : Springer Nature
Total Pages : 240
Release :
ISBN-10 : 9783030379629
ISBN-13 : 3030379620
Rating : 4/5 (29 Downloads)

Book Synopsis Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis by : Sujit Rokka Chhetri

Download or read book Data-Driven Modeling of Cyber-Physical Systems using Side-Channel Analysis written by Sujit Rokka Chhetri and published by Springer Nature. This book was released on 2020-02-08 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a new perspective on modeling cyber-physical systems (CPS), using a data-driven approach. The authors cover the use of state-of-the-art machine learning and artificial intelligence algorithms for modeling various aspect of the CPS. This book provides insight on how a data-driven modeling approach can be utilized to take advantage of the relation between the cyber and the physical domain of the CPS to aid the first-principle approach in capturing the stochastic phenomena affecting the CPS. The authors provide practical use cases of the data-driven modeling approach for securing the CPS, presenting novel attack models, building and maintaining the digital twin of the physical system. The book also presents novel, data-driven algorithms to handle non- Euclidean data. In summary, this book presents a novel perspective for modeling the CPS.