Qualitative Properties of Dispersive PDEs

Qualitative Properties of Dispersive PDEs
Author :
Publisher : Springer Nature
Total Pages : 246
Release :
ISBN-10 : 9789811964343
ISBN-13 : 9811964343
Rating : 4/5 (43 Downloads)

Book Synopsis Qualitative Properties of Dispersive PDEs by : Vladimir Georgiev

Download or read book Qualitative Properties of Dispersive PDEs written by Vladimir Georgiev and published by Springer Nature. This book was released on 2022-12-02 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a valuable collection of contributions by distinguished scholars presenting the state of the art and some of the most significant latest developments and future challenges in the field of dispersive partial differential equations. The material covers four major lines: (1) Long time behaviour of NLS-type equations, (2) probabilistic and nonstandard methods in the study of NLS equation, (3) dispersive properties for heat-, Schrödinger-, and Dirac-type flows, (4) wave and KdV-type equations. Across a variety of applications an amount of crucial mathematical tools are discussed, whose applicability and versatility goes beyond the specific models presented here. Furthermore, all contributions include updated and comparative literature.

Methods for Partial Differential Equations

Methods for Partial Differential Equations
Author :
Publisher : Birkhäuser
Total Pages : 473
Release :
ISBN-10 : 9783319664569
ISBN-13 : 3319664565
Rating : 4/5 (69 Downloads)

Book Synopsis Methods for Partial Differential Equations by : Marcelo R. Ebert

Download or read book Methods for Partial Differential Equations written by Marcelo R. Ebert and published by Birkhäuser. This book was released on 2018-02-23 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of different topics related to the theory of partial differential equations. Selected exercises are included at the end of each chapter to prepare readers for the “research project for beginners” proposed at the end of the book. It is a valuable resource for advanced graduates and undergraduate students who are interested in specializing in this area. The book is organized in five parts: In Part 1 the authors review the basics and the mathematical prerequisites, presenting two of the most fundamental results in the theory of partial differential equations: the Cauchy-Kovalevskaja theorem and Holmgren's uniqueness theorem in its classical and abstract form. It also introduces the method of characteristics in detail and applies this method to the study of Burger's equation. Part 2 focuses on qualitative properties of solutions to basic partial differential equations, explaining the usual properties of solutions to elliptic, parabolic and hyperbolic equations for the archetypes Laplace equation, heat equation and wave equation as well as the different features of each theory. It also discusses the notion of energy of solutions, a highly effective tool for the treatment of non-stationary or evolution models and shows how to define energies for different models. Part 3 demonstrates how phase space analysis and interpolation techniques are used to prove decay estimates for solutions on and away from the conjugate line. It also examines how terms of lower order (mass or dissipation) or additional regularity of the data may influence expected results. Part 4 addresses semilinear models with power type non-linearity of source and absorbing type in order to determine critical exponents: two well-known critical exponents, the Fujita exponent and the Strauss exponent come into play. Depending on concrete models these critical exponents divide the range of admissible powers in classes which make it possible to prove quite different qualitative properties of solutions, for example, the stability of the zero solution or blow-up behavior of local (in time) solutions. The last part features selected research projects and general background material.

Dispersive Partial Differential Equations

Dispersive Partial Differential Equations
Author :
Publisher : Cambridge University Press
Total Pages : 203
Release :
ISBN-10 : 9781316694589
ISBN-13 : 1316694585
Rating : 4/5 (89 Downloads)

Book Synopsis Dispersive Partial Differential Equations by : M. Burak Erdoğan

Download or read book Dispersive Partial Differential Equations written by M. Burak Erdoğan and published by Cambridge University Press. This book was released on 2016-05-03 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area of nonlinear dispersive partial differential equations (PDEs) is a fast developing field which has become exceedingly technical in recent years. With this book, the authors provide a self-contained and accessible introduction for graduate or advanced undergraduate students in mathematics, engineering, and the physical sciences. Both classical and modern methods used in the field are described in detail, concentrating on the model cases that simplify the presentation without compromising the deep technical aspects of the theory, thus allowing students to learn the material in a short period of time. This book is appropriate both for self-study by students with a background in analysis, and for teaching a semester-long introductory graduate course in nonlinear dispersive PDEs. Copious exercises are included, and applications of the theory are also presented to connect dispersive PDEs with the more general areas of dynamical systems and mathematical physics.

Handbook of Dynamical Systems

Handbook of Dynamical Systems
Author :
Publisher : Gulf Professional Publishing
Total Pages : 1099
Release :
ISBN-10 : 9780080532844
ISBN-13 : 0080532845
Rating : 4/5 (44 Downloads)

Book Synopsis Handbook of Dynamical Systems by : B. Fiedler

Download or read book Handbook of Dynamical Systems written by B. Fiedler and published by Gulf Professional Publishing. This book was released on 2002-02-21 with total page 1099 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations
Author :
Publisher : Springer Nature
Total Pages : 596
Release :
ISBN-10 : 9783030914271
ISBN-13 : 3030914275
Rating : 4/5 (71 Downloads)

Book Synopsis Nonlinear Dispersive Equations by : Christian Klein

Download or read book Nonlinear Dispersive Equations written by Christian Klein and published by Springer Nature. This book was released on 2021 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose-Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems. This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations endowed with a completely integrable member: the Benjamin-Ono, Davey-Stewartson, and Kadomtsev-Petviashvili equations. These asymptotic models are rigorously derived and qualitative properties such as soliton resolution are studied in detail in both integrable and non-integrable models. Numerical simulations are presented throughout to illustrate interesting phenomena. By presenting and comparing results from different fields, the book aims to stimulate scientific interactions and attract new students and researchers to the topic. To facilitate this, the chapters can be read largely independently of each other and the prerequisites have been limited to introductory courses in PDE theory.

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering

Nonlinear Dispersive Partial Differential Equations and Inverse Scattering
Author :
Publisher : Springer Nature
Total Pages : 530
Release :
ISBN-10 : 9781493998067
ISBN-13 : 1493998064
Rating : 4/5 (67 Downloads)

Book Synopsis Nonlinear Dispersive Partial Differential Equations and Inverse Scattering by : Peter D. Miller

Download or read book Nonlinear Dispersive Partial Differential Equations and Inverse Scattering written by Peter D. Miller and published by Springer Nature. This book was released on 2019-11-14 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains lectures and invited papers from the Focus Program on "Nonlinear Dispersive Partial Differential Equations and Inverse Scattering" held at the Fields Institute from July 31-August 18, 2017. The conference brought together researchers in completely integrable systems and PDE with the goal of advancing the understanding of qualitative and long-time behavior in dispersive nonlinear equations. The program included Percy Deift’s Coxeter lectures, which appear in this volume together with tutorial lectures given during the first week of the focus program. The research papers collected here include new results on the focusing ​nonlinear Schrödinger (NLS) equation, the massive Thirring model, and the Benjamin-Bona-Mahoney equation as dispersive PDE in one space dimension, as well as the Kadomtsev-Petviashvili II equation, the Zakharov-Kuznetsov equation, and the Gross-Pitaevskii equation as dispersive PDE in two space dimensions. The Focus Program coincided with the fiftieth anniversary of the discovery by Gardner, Greene, Kruskal and Miura that the Korteweg-de Vries (KdV) equation could be integrated by exploiting a remarkable connection between KdV and the spectral theory of Schrodinger's equation in one space dimension. This led to the discovery of a number of completely integrable models of dispersive wave propagation, including the cubic NLS equation, and the derivative NLS equation in one space dimension and the Davey-Stewartson, Kadomtsev-Petviashvili and Novikov-Veselov equations in two space dimensions. These models have been extensively studied and, in some cases, the inverse scattering theory has been put on rigorous footing. It has been used as a powerful analytical tool to study global well-posedness and elucidate asymptotic behavior of the solutions, including dispersion, soliton resolution, and semiclassical limits.

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations

Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations
Author :
Publisher : CRC Press
Total Pages : 565
Release :
ISBN-10 : 9781482251739
ISBN-13 : 1482251736
Rating : 4/5 (39 Downloads)

Book Synopsis Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations by : Victor A. Galaktionov

Download or read book Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations written by Victor A. Galaktionov and published by CRC Press. This book was released on 2014-09-22 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Blow-up for Higher-Order Parabolic, Hyperbolic, Dispersion and Schrodinger Equations shows how four types of higher-order nonlinear evolution partial differential equations (PDEs) have many commonalities through their special quasilinear degenerate representations. The authors present a unified approach to deal with these quasilinear PDEs.The book