Noise Research in Semiconductor Physics

Noise Research in Semiconductor Physics
Author :
Publisher : CRC Press
Total Pages : 432
Release :
ISBN-10 : 9781000159493
ISBN-13 : 1000159493
Rating : 4/5 (93 Downloads)

Book Synopsis Noise Research in Semiconductor Physics by : N Lukyanchikova

Download or read book Noise Research in Semiconductor Physics written by N Lukyanchikova and published by CRC Press. This book was released on 2020-08-18 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the role and abilities of fluctuation in semiconductor physics, and shows what kinds of physical information are involved in the noise characteristics of semiconductor materials and devices, how this information may be decoded and which advantages are inherent to the noise methods. The text provides a comprehensive account of current results, addressing problems which have not previously been covered in Western literature, including the excess noise of tunnel-recombination currents and photocurrents in diodes, fluctuation phenomena in a real photoconductor with different recombination centers, and methods of noise spectroscopy of levels in a wide range of materials and devices.

Noise Research in Semiconductor Physics

Noise Research in Semiconductor Physics
Author :
Publisher : CRC Press
Total Pages : 432
Release :
ISBN-10 : 9056990063
ISBN-13 : 9789056990060
Rating : 4/5 (63 Downloads)

Book Synopsis Noise Research in Semiconductor Physics by : N Lukyanchikova

Download or read book Noise Research in Semiconductor Physics written by N Lukyanchikova and published by CRC Press. This book was released on 1997-03-19 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the role and abilities of fluctuation in semiconductor physics, and shows what kinds of physical information are involved in the noise characteristics of semiconductor materials and devices, how this information may be decoded and which advantages are inherent to the noise methods. The text provides a comprehensive account of current results, addressing problems which have not previously been covered in Western literature, including the excess noise of tunnel-recombination currents and photocurrents in diodes, fluctuation phenomena in a real photoconductor with different recombination centers, and methods of noise spectroscopy of levels in a wide range of materials and devices.

Noise in Semiconductor Devices

Noise in Semiconductor Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 241
Release :
ISBN-10 : 9783662045305
ISBN-13 : 3662045303
Rating : 4/5 (05 Downloads)

Book Synopsis Noise in Semiconductor Devices by : Fabrizio Bonani

Download or read book Noise in Semiconductor Devices written by Fabrizio Bonani and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an overview of the physical basis of noise in semiconductor devices, and a detailed treatment of numerical noise simulation in small-signal conditions. It presents innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions.

Noise in Nanoscale Semiconductor Devices

Noise in Nanoscale Semiconductor Devices
Author :
Publisher : Springer Nature
Total Pages : 724
Release :
ISBN-10 : 9783030375003
ISBN-13 : 3030375005
Rating : 4/5 (03 Downloads)

Book Synopsis Noise in Nanoscale Semiconductor Devices by : Tibor Grasser

Download or read book Noise in Nanoscale Semiconductor Devices written by Tibor Grasser and published by Springer Nature. This book was released on 2020-04-26 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the state-of-the-art, regarding noise in nanometer semiconductor devices. Readers will benefit from this leading-edge research, aimed at increasing reliability based on physical microscopic models. Authors discuss the most recent developments in the understanding of point defects, e.g. via ab initio calculations or intricate measurements, which have paved the way to more physics-based noise models which are applicable to a wider range of materials and features, e.g. III-V materials, 2D materials, and multi-state defects. Describes the state-of-the-art, regarding noise in nanometer semiconductor devices; Enables readers to design more reliable semiconductor devices; Offers the most up-to-date information on point defects, based on physical microscopic models.

Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices

Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices
Author :
Publisher : Springer Science & Business Media
Total Pages : 371
Release :
ISBN-10 : 9781402021701
ISBN-13 : 1402021704
Rating : 4/5 (01 Downloads)

Book Synopsis Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices by : Josef Sikula

Download or read book Advanced Experimental Methods for Noise Research in Nanoscale Electronic Devices written by Josef Sikula and published by Springer Science & Business Media. This book was released on 2006-02-21 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: A discussion of recently developed experimental methods for noise research in nanoscale electronic devices, conducted by specialists in transport and stochastic phenomena in nanoscale physics. The approach described is to create methods for experimental observations of noise sources, their localization and their frequency spectrum, voltage-current and thermal dependences. Our current knowledge of measurement methods for mesoscopic devices is summarized to identify directions for future research, related to downscaling effects. The directions for future research into fluctuation phenomena in quantum dot and quantum wire devices are specified. Nanoscale electronic devices will be the basic components for electronics of the 21st century. From this point of view the signal-to-noise ratio is a very important parameter for the device application. Since the noise is also a quality and reliability indicator, experimental methods will have a wide application in the future.

The Physics of Semiconductors

The Physics of Semiconductors
Author :
Publisher : Springer Nature
Total Pages : 905
Release :
ISBN-10 : 9783030515690
ISBN-13 : 3030515699
Rating : 4/5 (90 Downloads)

Book Synopsis The Physics of Semiconductors by : Marius Grundmann

Download or read book The Physics of Semiconductors written by Marius Grundmann and published by Springer Nature. This book was released on 2021-03-06 with total page 905 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 4th edition of this highly successful textbook features copious material for a complete upper-level undergraduate or graduate course, guiding readers to the point where they can choose a specialized topic and begin supervised research. The textbook provides an integrated approach beginning from the essential principles of solid-state and semiconductor physics to their use in various classic and modern semiconductor devices for applications in electronics and photonics. The text highlights many practical aspects of semiconductors: alloys, strain, heterostructures, nanostructures, amorphous semiconductors, and noise, which are essential aspects of modern semiconductor research but often omitted in other textbooks. This textbook also covers advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, and transparent conductive oxides. The 4th edition includes many updates and chapters on 2D materials and aspects of topology. The text derives explicit formulas for many results to facilitate a better understanding of the topics. Having evolved from a highly regarded two-semester course on the topic, The Physics of Semiconductors requires little or no prior knowledge of solid-state physics. More than 2100 references guide the reader to historic and current literature including original papers, review articles and topical books, providing a go-to point of reference for experienced researchers as well.

Microwave Noise in Semiconductor Devices

Microwave Noise in Semiconductor Devices
Author :
Publisher : John Wiley & Sons
Total Pages : 316
Release :
ISBN-10 : 0471384321
ISBN-13 : 9780471384328
Rating : 4/5 (21 Downloads)

Book Synopsis Microwave Noise in Semiconductor Devices by : Hans Hartnagel

Download or read book Microwave Noise in Semiconductor Devices written by Hans Hartnagel and published by John Wiley & Sons. This book was released on 2001-01-16 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough reference work bridging the gap between contemporary and traditional approaches to noise problems Noise in semiconductor devices refers to any unwanted signal or disturbance in the device that degrades performance. In semiconductor devices, noise is attributed to hot-electron effects. Current advances in information technology have led to the development of ultrafast devices that are required to provide low-noise, high-speed performance. Microwave Noise in Semiconductor Devices considers available data on the speed versus noise trade-off and discusses optimal solutions in semiconductors and semiconductor structures. These solutions are of direct interest in the research and development for fast, efficient, and reliable communications systems. As the only book of its kind accessible to practicing engineers, the material is divided into four parts-the kinetic theory of fluctuations and its corollaries, the methods of measurements of microwave noise, low-dimensional structures, and, finally, devices. With over 100 illustrations presenting recent experimental data for up-to-date semiconductor structures designed for ultrafast electronics, together with results of microscopic simulation where available, these examples, tables, and references offer a full comprehension of electronic processes and fluctuation in dimensionally quantizing structures. Bridging the apparent gap between the microscopic approach and the equivalent circuit approach, Microwave Noise in Semiconductor Devices considers microwave fluctuation phenomena and noise in terms of ultrafast kinetic processes specific to modern quantum-well structures. Scientists in materials science, semiconductor and solid-state physics, electronic engineers, and graduate students will all appreciate this indispensable review of contemporary and future microwave and high-speed electronics.