Machine learning methods for human brain imaging

Machine learning methods for human brain imaging
Author :
Publisher : Frontiers Media SA
Total Pages : 160
Release :
ISBN-10 : 9782832519103
ISBN-13 : 2832519105
Rating : 4/5 (03 Downloads)

Book Synopsis Machine learning methods for human brain imaging by : Fatos Tunay Yarman Vural

Download or read book Machine learning methods for human brain imaging written by Fatos Tunay Yarman Vural and published by Frontiers Media SA. This book was released on 2023-03-29 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Advances in Neuroergonomics and Cognitive Engineering

Advances in Neuroergonomics and Cognitive Engineering
Author :
Publisher : Springer Nature
Total Pages : 458
Release :
ISBN-10 : 9783030510411
ISBN-13 : 3030510417
Rating : 4/5 (11 Downloads)

Book Synopsis Advances in Neuroergonomics and Cognitive Engineering by : Hasan Ayaz

Download or read book Advances in Neuroergonomics and Cognitive Engineering written by Hasan Ayaz and published by Springer Nature. This book was released on 2020-06-27 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers broad overview of the field of cognitive engineering and neuroergonomics, covering emerging practices and future trends toward the harmonious integration of human operators and computer systems. It presents novel theoretical findings on mental workload and stress, activity theory, human reliability, error and risk, and a wealth of cutting-edge applications, such as strategies to make assistive technologies more user-oriented. Further, the book describes key advances in our understanding of cognitive processes, including mechanisms of perception, memory, reasoning, and motor response, with a particular focus on their role in interactions between humans and other elements of computer-based systems. Gathering the proceedings of the AHFE 2020 Virtual Conferences on Neuroergonomics and Cognitive Engineering, and Industrial Cognitive Ergonomics and Engineering Psychology, held on 16–20 July 2020, this book provides extensive and timely information for human–computer interaction researchers, human factors engineers and interaction designers, as well as decision-makers.

Machine Learning and Medical Imaging

Machine Learning and Medical Imaging
Author :
Publisher : Academic Press
Total Pages : 514
Release :
ISBN-10 : 9780128041147
ISBN-13 : 0128041145
Rating : 4/5 (47 Downloads)

Book Synopsis Machine Learning and Medical Imaging by : Guorong Wu

Download or read book Machine Learning and Medical Imaging written by Guorong Wu and published by Academic Press. This book was released on 2016-08-11 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques

Artificial Intelligence in Medical Imaging

Artificial Intelligence in Medical Imaging
Author :
Publisher : Springer
Total Pages : 369
Release :
ISBN-10 : 9783319948782
ISBN-13 : 3319948784
Rating : 4/5 (82 Downloads)

Book Synopsis Artificial Intelligence in Medical Imaging by : Erik R. Ranschaert

Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Medical Image Registration

Medical Image Registration
Author :
Publisher : CRC Press
Total Pages : 394
Release :
ISBN-10 : 9781420042474
ISBN-13 : 1420042475
Rating : 4/5 (74 Downloads)

Book Synopsis Medical Image Registration by : Joseph V. Hajnal

Download or read book Medical Image Registration written by Joseph V. Hajnal and published by CRC Press. This book was released on 2001-06-27 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Image registration is the process of systematically placing separate images in a common frame of reference so that the information they contain can be optimally integrated or compared. This is becoming the central tool for image analysis, understanding, and visualization in both medical and scientific applications. Medical Image Registration provid

Magnetic Resonance Brain Imaging

Magnetic Resonance Brain Imaging
Author :
Publisher : Springer Nature
Total Pages : 242
Release :
ISBN-10 : 9783030291846
ISBN-13 : 3030291847
Rating : 4/5 (46 Downloads)

Book Synopsis Magnetic Resonance Brain Imaging by : Jörg Polzehl

Download or read book Magnetic Resonance Brain Imaging written by Jörg Polzehl and published by Springer Nature. This book was released on 2019-09-25 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the modeling and analysis of magnetic resonance imaging (MRI) data acquired from the human brain. The data processing pipelines described rely on R. The book is intended for readers from two communities: Statisticians who are interested in neuroimaging and looking for an introduction to the acquired data and typical scientific problems in the field; and neuroimaging students wanting to learn about the statistical modeling and analysis of MRI data. Offering a practical introduction to the field, the book focuses on those problems in data analysis for which implementations within R are available. It also includes fully worked examples and as such serves as a tutorial on MRI analysis with R, from which the readers can derive their own data processing scripts. The book starts with a short introduction to MRI and then examines the process of reading and writing common neuroimaging data formats to and from the R session. The main chapters cover three common MR imaging modalities and their data modeling and analysis problems: functional MRI, diffusion MRI, and Multi-Parameter Mapping. The book concludes with extended appendices providing details of the non-parametric statistics used and the resources for R and MRI data.The book also addresses the issues of reproducibility and topics like data organization and description, as well as open data and open science. It relies solely on a dynamic report generation with knitr and uses neuroimaging data publicly available in data repositories. The PDF was created executing the R code in the chunks and then running LaTeX, which means that almost all figures, numbers, and results were generated while producing the PDF from the sources.

Deep Learning Methods and Applications in Brain Imaging for the Diagnosis of Neurological and Psychiatric Disorders

Deep Learning Methods and Applications in Brain Imaging for the Diagnosis of Neurological and Psychiatric Disorders
Author :
Publisher : Frontiers Media SA
Total Pages : 151
Release :
ISBN-10 : 9782832555507
ISBN-13 : 2832555500
Rating : 4/5 (07 Downloads)

Book Synopsis Deep Learning Methods and Applications in Brain Imaging for the Diagnosis of Neurological and Psychiatric Disorders by : Hao Zhang

Download or read book Deep Learning Methods and Applications in Brain Imaging for the Diagnosis of Neurological and Psychiatric Disorders written by Hao Zhang and published by Frontiers Media SA. This book was released on 2024-10-14 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brain imaging has been successfully used to generate image-based biomarkers for various neurological and psychiatric disorders, such as Alzheimer’s and related dementias, Parkinson’s disease, stroke, traumatic brain injury, brain tumors, depression, schizophrenia, etc. However, accurate brain image-based diagnosis at the individual level remains elusive, and this applies to the diagnosis of neuropathological diseases as well as clinical syndromes. In recent years, deep learning techniques, due to their ability to learn complex patterns from large amounts of data, have had remarkable success in various fields, such as computer vision and natural language processing. Applying deep learning methods to brain imaging-assisted diagnosis, while promising, is facing challenges such as insufficiently labeled data, difficulty in interpreting diagnosis results, variations in data acquisition in multi-site projects, integration of multimodal data, clinical heterogeneity, etc. The goal of this research topic is to gather cutting-edge research that showcases the application of deep learning methods in brain imaging for the diagnosis of neurological and psychiatric disorders. We encourage submissions that demonstrate novel approaches to overcome various abovementioned difficulties and achieve more accurate, reliable, generalizable, and interpretable diagnosis of neurological and psychiatric disorders in this field.