Inverse and Ill-posed Problems

Inverse and Ill-posed Problems
Author :
Publisher : Walter de Gruyter
Total Pages : 476
Release :
ISBN-10 : 9783110224016
ISBN-13 : 3110224011
Rating : 4/5 (16 Downloads)

Book Synopsis Inverse and Ill-posed Problems by : Sergey I. Kabanikhin

Download or read book Inverse and Ill-posed Problems written by Sergey I. Kabanikhin and published by Walter de Gruyter. This book was released on 2011-12-23 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of ill-posed problems originated in an unusual way. As a rule, a new concept is a subject in which its creator takes a keen interest. The concept of ill-posed problems was introduced by Hadamard with the comment that these problems are physically meaningless and not worthy of the attention of serious researchers. Despite Hadamard's pessimistic forecasts, however, his unloved "child" has turned into a powerful theory whose results are used in many fields of pure and applied mathematics. What is the secret of its success? The answer is clear. Ill-posed problems occur everywhere and it is unreasonable to ignore them. Unlike ill-posed problems, inverse problems have no strict mathematical definition. In general, they can be described as the task of recovering a part of the data of a corresponding direct (well-posed) problem from information about its solution. Inverse problems were first encountered in practice and are mostly ill-posed. The urgent need for their solution, especially in geological exploration and medical diagnostics, has given powerful impetus to the development of the theory of ill-posed problems. Nowadays, the terms "inverse problem" and "ill-posed problem" are inextricably linked to each other. Inverse and ill-posed problems are currently attracting great interest. A vast literature is devoted to these problems, making it necessary to systematize the accumulated material. This book is the first small step in that direction. We propose a classification of inverse problems according to the type of equation, unknowns and additional information. We consider specific problems from a single position and indicate relationships between them. The problems relate to different areas of mathematics, such as linear algebra, theory of integral equations, integral geometry, spectral theory and mathematical physics. We give examples of applied problems that can be studied using the techniques we describe. This book was conceived as a textbook on the foundations of the theory of inverse and ill-posed problems for university students. The author's intention was to explain this complex material in the most accessible way possible. The monograph is aimed primarily at those who are just beginning to get to grips with inverse and ill-posed problems but we hope that it will be useful to anyone who is interested in the subject.

Inverse and Ill-posed Problems

Inverse and Ill-posed Problems
Author :
Publisher :
Total Pages : 592
Release :
ISBN-10 : UCAL:B4406374
ISBN-13 :
Rating : 4/5 (74 Downloads)

Book Synopsis Inverse and Ill-posed Problems by : Heinz W. Engl

Download or read book Inverse and Ill-posed Problems written by Heinz W. Engl and published by . This book was released on 1987 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse and Ill-Posed Problems.

Numerical Methods for Solving Inverse Problems of Mathematical Physics

Numerical Methods for Solving Inverse Problems of Mathematical Physics
Author :
Publisher : Walter de Gruyter
Total Pages : 453
Release :
ISBN-10 : 9783110205794
ISBN-13 : 3110205793
Rating : 4/5 (94 Downloads)

Book Synopsis Numerical Methods for Solving Inverse Problems of Mathematical Physics by : A. A. Samarskii

Download or read book Numerical Methods for Solving Inverse Problems of Mathematical Physics written by A. A. Samarskii and published by Walter de Gruyter. This book was released on 2008-08-27 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modelling.

Theory of Linear Ill-Posed Problems and its Applications

Theory of Linear Ill-Posed Problems and its Applications
Author :
Publisher : Walter de Gruyter
Total Pages : 296
Release :
ISBN-10 : 9783110944822
ISBN-13 : 3110944820
Rating : 4/5 (22 Downloads)

Book Synopsis Theory of Linear Ill-Posed Problems and its Applications by : Valentin K. Ivanov

Download or read book Theory of Linear Ill-Posed Problems and its Applications written by Valentin K. Ivanov and published by Walter de Gruyter. This book was released on 2013-02-18 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a revised and extended version of the Russian edition from 1978. It includes the general theory of linear ill-posed problems concerning e. g. the structure of sets of uniform regularization, the theory of error estimation, and the optimality method. As a distinguishing feature the book considers ill-posed problems not only in Hilbert but also in Banach spaces. It is natural that since the appearance of the first edition considerable progress has been made in the theory of inverse and ill-posed problems as wall as in ist applications. To reflect these accomplishments the authors included additional material e. g. comments to each chapter and a list of monographs with annotations.

A Taste of Inverse Problems

A Taste of Inverse Problems
Author :
Publisher : SIAM
Total Pages : 171
Release :
ISBN-10 : 9781611974942
ISBN-13 : 1611974941
Rating : 4/5 (42 Downloads)

Book Synopsis A Taste of Inverse Problems by : Martin Hanke

Download or read book A Taste of Inverse Problems written by Martin Hanke and published by SIAM. This book was released on 2017-01-01 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. This book presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. A Taste of Inverse Problems: Basic Theory and Examples rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations;presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.

Iterative Regularization Methods for Nonlinear Ill-Posed Problems

Iterative Regularization Methods for Nonlinear Ill-Posed Problems
Author :
Publisher : Walter de Gruyter
Total Pages : 205
Release :
ISBN-10 : 9783110208276
ISBN-13 : 311020827X
Rating : 4/5 (76 Downloads)

Book Synopsis Iterative Regularization Methods for Nonlinear Ill-Posed Problems by : Barbara Kaltenbacher

Download or read book Iterative Regularization Methods for Nonlinear Ill-Posed Problems written by Barbara Kaltenbacher and published by Walter de Gruyter. This book was released on 2008-09-25 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.

An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems
Author :
Publisher : Springer Science & Business Media
Total Pages : 314
Release :
ISBN-10 : 9781441984746
ISBN-13 : 1441984747
Rating : 4/5 (46 Downloads)

Book Synopsis An Introduction to the Mathematical Theory of Inverse Problems by : Andreas Kirsch

Download or read book An Introduction to the Mathematical Theory of Inverse Problems written by Andreas Kirsch and published by Springer Science & Business Media. This book was released on 2011-03-24 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.