Graph Algorithms

Graph Algorithms
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 297
Release :
ISBN-10 : 9781492047636
ISBN-13 : 1492047635
Rating : 4/5 (36 Downloads)

Book Synopsis Graph Algorithms by : Mark Needham

Download or read book Graph Algorithms written by Mark Needham and published by "O'Reilly Media, Inc.". This book was released on 2019-05-16 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection. Learn how graph analytics vary from conventional statistical analysis Understand how classic graph algorithms work, and how they are applied Get guidance on which algorithms to use for different types of questions Explore algorithm examples with working code and sample datasets from Spark and Neo4j See how connected feature extraction can increase machine learning accuracy and precision Walk through creating an ML workflow for link prediction combining Neo4j and Spark

Graph Algorithms for Data Science

Graph Algorithms for Data Science
Author :
Publisher : Simon and Schuster
Total Pages : 350
Release :
ISBN-10 : 9781617299469
ISBN-13 : 1617299464
Rating : 4/5 (69 Downloads)

Book Synopsis Graph Algorithms for Data Science by : Tomaž Bratanic

Download or read book Graph Algorithms for Data Science written by Tomaž Bratanic and published by Simon and Schuster. This book was released on 2024-02-27 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Algorithms for Data Science teaches you how to construct graphs from both structured and unstructured data. You'll learn how the flexible Cypher query language can be used to easily manipulate graph structures, and extract amazing insights. Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications. It's filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You'll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects.

Graph Algorithms

Graph Algorithms
Author :
Publisher : Cambridge University Press
Total Pages : 203
Release :
ISBN-10 : 9781139504157
ISBN-13 : 1139504150
Rating : 4/5 (57 Downloads)

Book Synopsis Graph Algorithms by : Shimon Even

Download or read book Graph Algorithms written by Shimon Even and published by Cambridge University Press. This book was released on 2011-09-19 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shimon Even's Graph Algorithms, published in 1979, was a seminal introductory book on algorithms read by everyone engaged in the field. This thoroughly revised second edition, with a foreword by Richard M. Karp and notes by Andrew V. Goldberg, continues the exceptional presentation from the first edition and explains algorithms in a formal but simple language with a direct and intuitive presentation. The book begins by covering basic material, including graphs and shortest paths, trees, depth-first-search and breadth-first search. The main part of the book is devoted to network flows and applications of network flows, and it ends with chapters on planar graphs and testing graph planarity.

Python Data Science Essentials

Python Data Science Essentials
Author :
Publisher : Packt Publishing Ltd
Total Pages : 373
Release :
ISBN-10 : 9781786462831
ISBN-13 : 1786462834
Rating : 4/5 (31 Downloads)

Book Synopsis Python Data Science Essentials by : Alberto Boschetti

Download or read book Python Data Science Essentials written by Alberto Boschetti and published by Packt Publishing Ltd. This book was released on 2016-10-28 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will Learn Set up your data science toolbox using a Python scientific environment on Windows, Mac, and Linux Get data ready for your data science project Manipulate, fix, and explore data in order to solve data science problems Set up an experimental pipeline to test your data science hypotheses Choose the most effective and scalable learning algorithm for your data science tasks Optimize your machine learning models to get the best performance Explore and cluster graphs, taking advantage of interconnections and links in your data In Detail Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users. Style and approach The book is structured as a data science project. You will always benefit from clear code and simplified examples to help you understand the underlying mechanics and real-world datasets.

Graph Algorithms in the Language of Linear Algebra

Graph Algorithms in the Language of Linear Algebra
Author :
Publisher : SIAM
Total Pages : 388
Release :
ISBN-10 : 0898719917
ISBN-13 : 9780898719918
Rating : 4/5 (17 Downloads)

Book Synopsis Graph Algorithms in the Language of Linear Algebra by : Jeremy Kepner

Download or read book Graph Algorithms in the Language of Linear Algebra written by Jeremy Kepner and published by SIAM. This book was released on 2011-01-01 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current exponential growth in graph data has forced a shift to parallel computing for executing graph algorithms. Implementing parallel graph algorithms and achieving good parallel performance have proven difficult. This book addresses these challenges by exploiting the well-known duality between a canonical representation of graphs as abstract collections of vertices and edges and a sparse adjacency matrix representation. This linear algebraic approach is widely accessible to scientists and engineers who may not be formally trained in computer science. The authors show how to leverage existing parallel matrix computation techniques and the large amount of software infrastructure that exists for these computations to implement efficient and scalable parallel graph algorithms. The benefits of this approach are reduced algorithmic complexity, ease of implementation, and improved performance.

Graph Machine Learning

Graph Machine Learning
Author :
Publisher : Packt Publishing Ltd
Total Pages : 338
Release :
ISBN-10 : 9781800206755
ISBN-13 : 1800206755
Rating : 4/5 (55 Downloads)

Book Synopsis Graph Machine Learning by : Claudio Stamile

Download or read book Graph Machine Learning written by Claudio Stamile and published by Packt Publishing Ltd. This book was released on 2021-06-25 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build machine learning algorithms using graph data and efficiently exploit topological information within your models Key Features Implement machine learning techniques and algorithms in graph data Identify the relationship between nodes in order to make better business decisions Apply graph-based machine learning methods to solve real-life problems Book Description Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You'll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you'll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You'll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications. What you will learn Write Python scripts to extract features from graphs Distinguish between the main graph representation learning techniques Learn how to extract data from social networks, financial transaction systems, for text analysis, and more Implement the main unsupervised and supervised graph embedding techniques Get to grips with shallow embedding methods, graph neural networks, graph regularization methods, and more Deploy and scale out your application seamlessly Who this book is for This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. It will also be useful for machine learning developers or anyone who wants to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required, alongside a solid understanding of ML basics. You'll also need intermediate-level Python programming knowledge to get started with this book.

Hands-On Graph Analytics with Neo4j

Hands-On Graph Analytics with Neo4j
Author :
Publisher : Packt Publishing Ltd
Total Pages : 496
Release :
ISBN-10 : 9781839215667
ISBN-13 : 1839215666
Rating : 4/5 (67 Downloads)

Book Synopsis Hands-On Graph Analytics with Neo4j by : Estelle Scifo

Download or read book Hands-On Graph Analytics with Neo4j written by Estelle Scifo and published by Packt Publishing Ltd. This book was released on 2020-08-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover how to use Neo4j to identify relationships within complex and large graph datasets using graph modeling, graph algorithms, and machine learning Key FeaturesGet up and running with graph analytics with the help of real-world examplesExplore various use cases such as fraud detection, graph-based search, and recommendation systemsGet to grips with the Graph Data Science library with the help of examples, and use Neo4j in the cloud for effective application scalingBook Description Neo4j is a graph database that includes plugins to run complex graph algorithms. The book starts with an introduction to the basics of graph analytics, the Cypher query language, and graph architecture components, and helps you to understand why enterprises have started to adopt graph analytics within their organizations. You’ll find out how to implement Neo4j algorithms and techniques and explore various graph analytics methods to reveal complex relationships in your data. You’ll be able to implement graph analytics catering to different domains such as fraud detection, graph-based search, recommendation systems, social networking, and data management. You’ll also learn how to store data in graph databases and extract valuable insights from it. As you become well-versed with the techniques, you’ll discover graph machine learning in order to address simple to complex challenges using Neo4j. You will also understand how to use graph data in a machine learning model in order to make predictions based on your data. Finally, you’ll get to grips with structuring a web application for production using Neo4j. By the end of this book, you’ll not only be able to harness the power of graphs to handle a broad range of problem areas, but you’ll also have learned how to use Neo4j efficiently to identify complex relationships in your data. What you will learnBecome well-versed with Neo4j graph database building blocks, nodes, and relationshipsDiscover how to create, update, and delete nodes and relationships using Cypher queryingUse graphs to improve web search and recommendationsUnderstand graph algorithms such as pathfinding, spatial search, centrality, and community detectionFind out different steps to integrate graphs in a normal machine learning pipelineFormulate a link prediction problem in the context of machine learningImplement graph embedding algorithms such as DeepWalk, and use them in Neo4j graphsWho this book is for This book is for data analysts, business analysts, graph analysts, and database developers looking to store and process graph data to reveal key data insights. This book will also appeal to data scientists who want to build intelligent graph applications catering to different domains. Some experience with Neo4j is required.