Geometry and Spectra of Compact Riemann Surfaces

Geometry and Spectra of Compact Riemann Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 473
Release :
ISBN-10 : 9780817649920
ISBN-13 : 0817649921
Rating : 4/5 (20 Downloads)

Book Synopsis Geometry and Spectra of Compact Riemann Surfaces by : Peter Buser

Download or read book Geometry and Spectra of Compact Riemann Surfaces written by Peter Buser and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature –1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces
Author :
Publisher : American Mathematical Soc.
Total Pages : 414
Release :
ISBN-10 : 9780821802687
ISBN-13 : 0821802682
Rating : 4/5 (87 Downloads)

Book Synopsis Algebraic Curves and Riemann Surfaces by : Rick Miranda

Download or read book Algebraic Curves and Riemann Surfaces written by Rick Miranda and published by American Mathematical Soc.. This book was released on 1995 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.

Riemann Surfaces by Way of Complex Analytic Geometry

Riemann Surfaces by Way of Complex Analytic Geometry
Author :
Publisher : American Mathematical Soc.
Total Pages : 258
Release :
ISBN-10 : 9780821853696
ISBN-13 : 0821853694
Rating : 4/5 (96 Downloads)

Book Synopsis Riemann Surfaces by Way of Complex Analytic Geometry by : Dror Varolin

Download or read book Riemann Surfaces by Way of Complex Analytic Geometry written by Dror Varolin and published by American Mathematical Soc.. This book was released on 2011-08-10 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book establishes the basic function theory and complex geometry of Riemann surfaces, both open and compact. Many of the methods used in the book are adaptations and simplifications of methods from the theories of several complex variables and complex analytic geometry and would serve as excellent training for mathematicians wanting to work in complex analytic geometry. After three introductory chapters, the book embarks on its central, and certainly most novel, goal of studying Hermitian holomorphic line bundles and their sections. Among other things, finite-dimensionality of spaces of sections of holomorphic line bundles of compact Riemann surfaces and the triviality of holomorphic line bundles over Riemann surfaces are proved, with various applications. Perhaps the main result of the book is Hormander's Theorem on the square-integrable solution of the Cauchy-Riemann equations. The crowning application is the proof of the Kodaira and Narasimhan Embedding Theorems for compact and open Riemann surfaces. The intended reader has had first courses in real and complex analysis, as well as advanced calculus and basic differential topology (though the latter subject is not crucial). As such, the book should appeal to a broad portion of the mathematical and scientific community. This book is the first to give a textbook exposition of Riemann surface theory from the viewpoint of positive Hermitian line bundles and Hormander $\bar \partial$ estimates. It is more analytical and PDE oriented than prior texts in the field, and is an excellent introduction to the methods used currently in complex geometry, as exemplified in J. P. Demailly's online but otherwise unpublished book ``Complex analytic and differential geometry.'' I used it for a one quarter course on Riemann surfaces and found it to be clearly written and self-contained. It not only fills a significant gap in the large textbook literature on Riemann surfaces but is also rather indispensible for those who would like to teach the subject from a differential geometric and PDE viewpoint. --Steven Zelditch

Riemann Surfaces

Riemann Surfaces
Author :
Publisher : Oxford University Press
Total Pages : 301
Release :
ISBN-10 : 9780198526391
ISBN-13 : 0198526393
Rating : 4/5 (91 Downloads)

Book Synopsis Riemann Surfaces by : Simon Donaldson

Download or read book Riemann Surfaces written by Simon Donaldson and published by Oxford University Press. This book was released on 2011-03-24 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative but accessible text on one dimensional complex manifolds or Riemann surfaces. Dealing with the main results on Riemann surfaces from a variety of points of view; it pulls together material from global analysis, topology, and algebraic geometry, and covers the essential mathematical methods and tools.

Compact Riemann Surfaces

Compact Riemann Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 293
Release :
ISBN-10 : 9783540330677
ISBN-13 : 3540330674
Rating : 4/5 (77 Downloads)

Book Synopsis Compact Riemann Surfaces by : Jürgen Jost

Download or read book Compact Riemann Surfaces written by Jürgen Jost and published by Springer Science & Business Media. This book was released on 2006-12-13 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is novel in its broad perspective on Riemann surfaces: the text systematically explores the connection with other fields of mathematics. The book can serve as an introduction to contemporary mathematics as a whole, as it develops background material from algebraic topology, differential geometry, the calculus of variations, elliptic PDE, and algebraic geometry. The book is unique among textbooks on Riemann surfaces in its inclusion of an introduction to Teichmüller theory. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.

Topological, Differential and Conformal Geometry of Surfaces

Topological, Differential and Conformal Geometry of Surfaces
Author :
Publisher : Springer Nature
Total Pages : 282
Release :
ISBN-10 : 9783030890322
ISBN-13 : 3030890325
Rating : 4/5 (22 Downloads)

Book Synopsis Topological, Differential and Conformal Geometry of Surfaces by : Norbert A'Campo

Download or read book Topological, Differential and Conformal Geometry of Surfaces written by Norbert A'Campo and published by Springer Nature. This book was released on 2021-10-27 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the main geometric structures that are carried by compact surfaces, with an emphasis on the classical theory of Riemann surfaces. It first covers the prerequisites, including the basics of differential forms, the Poincaré Lemma, the Morse Lemma, the classification of compact connected oriented surfaces, Stokes’ Theorem, fixed point theorems and rigidity theorems. There is also a novel presentation of planar hyperbolic geometry. Moving on to more advanced concepts, it covers topics such as Riemannian metrics, the isometric torsion-free connection on vector fields, the Ansatz of Koszul, the Gauss–Bonnet Theorem, and integrability. These concepts are then used for the study of Riemann surfaces. One of the focal points is the Uniformization Theorem for compact surfaces, an elementary proof of which is given via a property of the energy functional. Among numerous other results, there is also a proof of Chow’s Theorem on compact holomorphic submanifolds in complex projective spaces. Based on lecture courses given by the author, the book will be accessible to undergraduates and graduates interested in the analytic theory of Riemann surfaces.

Geometry of Riemann Surfaces and Teichmüller Spaces

Geometry of Riemann Surfaces and Teichmüller Spaces
Author :
Publisher : Elsevier
Total Pages : 269
Release :
ISBN-10 : 9780080872803
ISBN-13 : 0080872808
Rating : 4/5 (03 Downloads)

Book Synopsis Geometry of Riemann Surfaces and Teichmüller Spaces by : M. Seppälä

Download or read book Geometry of Riemann Surfaces and Teichmüller Spaces written by M. Seppälä and published by Elsevier. This book was released on 2011-08-18 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: The moduli problem is to describe the structure of the spaceof isomorphism classes of Riemann surfaces of a giventopological type. This space is known as the modulispace and has been at the center of pure mathematics formore than a hundred years. In spite of its age, this fieldstill attracts a lot of attention, the smooth compact Riemannsurfaces being simply complex projective algebraic curves.Therefore the moduli space of compact Riemann surfaces is alsothe moduli space of complex algebraic curves. This space lieson the intersection of many fields of mathematics and may bestudied from many different points of view.The aim of thismonograph is to present information about the structure of themoduli space using as concrete and elementary methods aspossible. This simple approach leads to a rich theory andopens a new way of treating the moduli problem, putting newlife into classical methods that were used in the study ofmoduli problems in the 1920s.