Geodesic Math and How to Use It

Geodesic Math and How to Use It
Author :
Publisher : Univ of California Press
Total Pages : 190
Release :
ISBN-10 : 0520239318
ISBN-13 : 9780520239319
Rating : 4/5 (18 Downloads)

Book Synopsis Geodesic Math and How to Use It by : Hugh Kenner

Download or read book Geodesic Math and How to Use It written by Hugh Kenner and published by Univ of California Press. This book was released on 2003-10-20 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1976 literary critic Hugh Kenner published this fully-illustrated practical manual for the construction of geodesic domes, which had been invented 25 years previously by R. Buckminster Fuller. Now returned to print for the first time since 1990.

Geodesic Flows

Geodesic Flows
Author :
Publisher : Springer Science & Business Media
Total Pages : 160
Release :
ISBN-10 : 9781461216001
ISBN-13 : 1461216001
Rating : 4/5 (01 Downloads)

Book Synopsis Geodesic Flows by : Gabriel P. Paternain

Download or read book Geodesic Flows written by Gabriel P. Paternain and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane's formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank the referee for a very careful reading of the manuscript and for a large number of comments with corrections and suggestions for improvement.

Geodesic Domes

Geodesic Domes
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 1636170102
ISBN-13 : 9781636170107
Rating : 4/5 (02 Downloads)

Book Synopsis Geodesic Domes by : Borin Van Loon

Download or read book Geodesic Domes written by Borin Van Loon and published by . This book was released on 2020-10-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Each of the models in this book is both beautiful and interesting to make. Each also plays its part as a hands-on introduction to geodesic domes. With the aid of its models, this book explains the underlying theory for designing geodesic domes and shows how a sphere can be divided and subdivided symmetrically in order to create dramatic buildings which are light and strong and also have no need of internal support.

Divided Spheres

Divided Spheres
Author :
Publisher : CRC Press
Total Pages : 484
Release :
ISBN-10 : 9781000412437
ISBN-13 : 1000412431
Rating : 4/5 (37 Downloads)

Book Synopsis Divided Spheres by : Edward S. Popko

Download or read book Divided Spheres written by Edward S. Popko and published by CRC Press. This book was released on 2021-08-19 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the previous edition [. . .] Dr. Popko’s elegant new book extends both the science and the art of spherical modeling to include Computer-Aided Design and applications, which I would never have imagined when I started down this fascinating and rewarding path. His lovely illustrations bring the subject to life for all readers, including those who are not drawn to the mathematics. This book demonstrates the scope, beauty, and utility of an art and science with roots in antiquity. [. . .] Anyone with an interest in the geometry of spheres, whether a professional engineer, an architect or product designer, a student, a teacher, or simply someone curious about the spectrum of topics to be found in this book, will find it helpful and rewarding. – Magnus Wenninger, Benedictine Monk and Polyhedral Modeler Ed Popko's comprehensive survey of the history, literature, geometric, and mathematical properties of the sphere is the definitive work on the subject. His masterful and thorough investigation of every aspect is covered with sensitivity and intelligence. This book should be in the library of anyone interested in the orderly subdivision of the sphere. – Shoji Sadao, Architect, Cartographer and lifelong business partner of Buckminster Fuller Edward Popko's Divided Spheres is a "thesaurus" must to those whose academic interest in the world of geometry looks to greater coverage of synonyms and antonyms of this beautiful shape we call a sphere. The late Buckminster Fuller might well place this manuscript as an all-reference for illumination to one of nature's most perfect inventions. – Thomas T. K. Zung, Senior Partner, Buckminster Fuller, Sadao, & Zung Architects. This first edition of this well-illustrated book presented a thorough introduction to the mathematics of Buckminster Fuller’s invention of the geodesic dome, which paved the way for a flood of practical applications as diverse as weather forecasting and fish farms. The author explained the principles of spherical design and the three classic methods of subdivision based on geometric solids (polyhedra). This thoroughly edited new edition does all that, while also introducing new techniques that extend the class concept by relaxing the triangulation constraint to develop two new forms of optimized hexagonal tessellations. The objective is to generate spherical grids where all edge (or arc) lengths or overlap ratios are equal. New to the Second Edition New Foreword by Joseph Clinton, lifelong Buckminster Fuller collaborator A new chapter by Chris Kitrick on the mathematical techniques for developing optimal single-edge hexagonal tessellations, of varying density, with the smallest edge possible for a particular topology, suggesting ways of comparing their levels of optimization An expanded history of the evolution of spherical subdivision New applications of spherical design in science, product design, architecture, and entertainment New geodesic algorithms for grid optimization New full-color spherical illustrations created using DisplaySphere to aid readers in visualizing and comparing the various tessellations presented in the book Updated Bibliography with references to the most recent advancements in spherical subdivision methods

Curves and Surfaces

Curves and Surfaces
Author :
Publisher : Springer Science & Business Media
Total Pages : 407
Release :
ISBN-10 : 9788847019416
ISBN-13 : 8847019419
Rating : 4/5 (16 Downloads)

Book Synopsis Curves and Surfaces by : M. Abate

Download or read book Curves and Surfaces written by M. Abate and published by Springer Science & Business Media. This book was released on 2012-06-11 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to Differential Geometry of Curves and Surfaces. The theory of curves starts with a discussion of possible definitions of the concept of curve, proving in particular the classification of 1-dimensional manifolds. We then present the classical local theory of parametrized plane and space curves (curves in n-dimensional space are discussed in the complementary material): curvature, torsion, Frenet’s formulas and the fundamental theorem of the local theory of curves. Then, after a self-contained presentation of degree theory for continuous self-maps of the circumference, we study the global theory of plane curves, introducing winding and rotation numbers, and proving the Jordan curve theorem for curves of class C2, and Hopf theorem on the rotation number of closed simple curves. The local theory of surfaces begins with a comparison of the concept of parametrized (i.e., immersed) surface with the concept of regular (i.e., embedded) surface. We then develop the basic differential geometry of surfaces in R3: definitions, examples, differentiable maps and functions, tangent vectors (presented both as vectors tangent to curves in the surface and as derivations on germs of differentiable functions; we shall consistently use both approaches in the whole book) and orientation. Next we study the several notions of curvature on a surface, stressing both the geometrical meaning of the objects introduced and the algebraic/analytical methods needed to study them via the Gauss map, up to the proof of Gauss’ Teorema Egregium. Then we introduce vector fields on a surface (flow, first integrals, integral curves) and geodesics (definition, basic properties, geodesic curvature, and, in the complementary material, a full proof of minimizing properties of geodesics and of the Hopf-Rinow theorem for surfaces). Then we shall present a proof of the celebrated Gauss-Bonnet theorem, both in its local and in its global form, using basic properties (fully proved in the complementary material) of triangulations of surfaces. As an application, we shall prove the Poincaré-Hopf theorem on zeroes of vector fields. Finally, the last chapter will be devoted to several important results on the global theory of surfaces, like for instance the characterization of surfaces with constant Gaussian curvature, and the orientability of compact surfaces in R3.

Geodesic Math and How to Use It

Geodesic Math and How to Use It
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : 0520353366
ISBN-13 : 9780520353367
Rating : 4/5 (66 Downloads)

Book Synopsis Geodesic Math and How to Use It by : Hugh Kenner

Download or read book Geodesic Math and How to Use It written by Hugh Kenner and published by . This book was released on 2005 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: It was 1976-twenty-five years after R. Buckminster Fuller introduced geodesic domes when literary critic Hugh Kenner published this fully-illustrated practical manual for their construction. Now, some twenty-five years later, Geodesic Math and How to Use It again presents a systematic method of design and provides a step-by-step method for producing mathematical specifications for orthodox geodesic domes, as well as for a variety of elliptical, super-elliptical, and other nonspherical contours. Out of print since 1990, Geodesic Math and How To Use It is California's most requested backlist title. This edition is fully illustrated with complete original appendices.

Lectures on Closed Geodesics

Lectures on Closed Geodesics
Author :
Publisher :
Total Pages : 248
Release :
ISBN-10 : 3642618820
ISBN-13 : 9783642618826
Rating : 4/5 (20 Downloads)

Book Synopsis Lectures on Closed Geodesics by : W Klingenberg

Download or read book Lectures on Closed Geodesics written by W Klingenberg and published by . This book was released on 1978-01-01 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: