An Introduction to Fourier Analysis and Generalised Functions

An Introduction to Fourier Analysis and Generalised Functions
Author :
Publisher :
Total Pages : 96
Release :
ISBN-10 : UCSD:31822013847835
ISBN-13 :
Rating : 4/5 (35 Downloads)

Book Synopsis An Introduction to Fourier Analysis and Generalised Functions by : M. J. Lighthill

Download or read book An Introduction to Fourier Analysis and Generalised Functions written by M. J. Lighthill and published by . This book was released on 1958 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Clearly and attractively written, but without any deviation from rigorous standards of mathematical proof...." Science Progress

Generalized Functions and Fourier Analysis

Generalized Functions and Fourier Analysis
Author :
Publisher : Birkhäuser
Total Pages : 280
Release :
ISBN-10 : 9783319519111
ISBN-13 : 3319519115
Rating : 4/5 (11 Downloads)

Book Synopsis Generalized Functions and Fourier Analysis by : Michael Oberguggenberger

Download or read book Generalized Functions and Fourier Analysis written by Michael Oberguggenberger and published by Birkhäuser. This book was released on 2017-05-06 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an excellent and up-to-date overview on the convergence and joint progress in the fields of Generalized Functions and Fourier Analysis, notably in the core disciplines of pseudodifferential operators, microlocal analysis and time-frequency analysis. The volume is a collection of chapters addressing these fields, their interaction, their unifying concepts and their applications and is based on scientific activities related to the International Association for Generalized Functions (IAGF) and the ISAAC interest groups on Pseudo-Differential Operators (IGPDO) and on Generalized Functions (IGGF), notably on the longstanding collaboration of these groups within ISAAC.

Applications of Fourier Transforms to Generalized Functions

Applications of Fourier Transforms to Generalized Functions
Author :
Publisher : WIT Press
Total Pages : 193
Release :
ISBN-10 : 9781845645649
ISBN-13 : 1845645642
Rating : 4/5 (49 Downloads)

Book Synopsis Applications of Fourier Transforms to Generalized Functions by : M. Rahman

Download or read book Applications of Fourier Transforms to Generalized Functions written by M. Rahman and published by WIT Press. This book was released on 2011 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The generalized function is one of the important branches of mathematics which has enormous applications in practical fields. In particular its applications to the theory of distribution and signal processing are very much essential. In this computer age, information science plays a very important role and the Fourier transform is extremely significant in deciphering obscured information to be made understandable. The book contains six chapters and three appendices. Chapter 1 deals with the preliminary remarks of Fourier series from general point of view. Chapter 2 is concerned with the generalized functions and their Fourier transforms. Chapter 3 contains the Fourier transforms of particular generalized functions. Chapter 4 deals with the asymptotic estimation of Fourier transforms. Chapter 5 is devoted to the study of Fourier series as a series of generalized functions. Chapter 6 deals with the fast Fourier transforms.Appendix A contains the extended list of Fourier transform pairs.Appendix B illustrates the properties of impulse function.Appendix C contains an extended list of biographical references

Generalized Functions Theory and Technique

Generalized Functions Theory and Technique
Author :
Publisher : Springer Science & Business Media
Total Pages : 474
Release :
ISBN-10 : 9781468400359
ISBN-13 : 1468400355
Rating : 4/5 (59 Downloads)

Book Synopsis Generalized Functions Theory and Technique by : Ram P. Kanwal

Download or read book Generalized Functions Theory and Technique written by Ram P. Kanwal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.

Methods of the Theory of Generalized Functions

Methods of the Theory of Generalized Functions
Author :
Publisher : CRC Press
Total Pages : 332
Release :
ISBN-10 : 0415273560
ISBN-13 : 9780415273565
Rating : 4/5 (60 Downloads)

Book Synopsis Methods of the Theory of Generalized Functions by : V. S. Vladimirov

Download or read book Methods of the Theory of Generalized Functions written by V. S. Vladimirov and published by CRC Press. This book was released on 2002-08-15 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents the general theory of generalized functions, including the Fourier, Laplace, Mellin, Hilbert, Cauchy-Bochner and Poisson integral transforms and operational calculus, with the traditional material augmented by the theory of Fourier series, abelian theorems, and boundary values of helomorphic functions for one and several variables. The author addresses several facets in depth, including convolution theory, convolution algebras and convolution equations in them, homogenous generalized functions, and multiplication of generalized functions. This book will meet the needs of researchers, engineers, and students of applied mathematics, control theory, and the engineering sciences.

A First Course in Fourier Analysis

A First Course in Fourier Analysis
Author :
Publisher : Cambridge University Press
Total Pages : 39
Release :
ISBN-10 : 9781139469036
ISBN-13 : 1139469037
Rating : 4/5 (36 Downloads)

Book Synopsis A First Course in Fourier Analysis by : David W. Kammler

Download or read book A First Course in Fourier Analysis written by David W. Kammler and published by Cambridge University Press. This book was released on 2008-01-17 with total page 39 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others.

Distribution Theory and Transform Analysis

Distribution Theory and Transform Analysis
Author :
Publisher : Courier Corporation
Total Pages : 404
Release :
ISBN-10 : 9780486151946
ISBN-13 : 0486151948
Rating : 4/5 (46 Downloads)

Book Synopsis Distribution Theory and Transform Analysis by : A.H. Zemanian

Download or read book Distribution Theory and Transform Analysis written by A.H. Zemanian and published by Courier Corporation. This book was released on 2011-11-30 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distribution theory, a relatively recent mathematical approach to classical Fourier analysis, not only opened up new areas of research but also helped promote the development of such mathematical disciplines as ordinary and partial differential equations, operational calculus, transformation theory, and functional analysis. This text was one of the first to give a clear explanation of distribution theory; it combines the theory effectively with extensive practical applications to science and engineering problems. Based on a graduate course given at the State University of New York at Stony Brook, this book has two objectives: to provide a comparatively elementary introduction to distribution theory and to describe the generalized Fourier and Laplace transformations and their applications to integrodifferential equations, difference equations, and passive systems. After an introductory chapter defining distributions and the operations that apply to them, Chapter 2 considers the calculus of distributions, especially limits, differentiation, integrations, and the interchange of limiting processes. Some deeper properties of distributions, such as their local character as derivatives of continuous functions, are given in Chapter 3. Chapter 4 introduces the distributions of slow growth, which arise naturally in the generalization of the Fourier transformation. Chapters 5 and 6 cover the convolution process and its use in representing differential and difference equations. The distributional Fourier and Laplace transformations are developed in Chapters 7 and 8, and the latter transformation is applied in Chapter 9 to obtain an operational calculus for the solution of differential and difference equations of the initial-condition type. Some of the previous theory is applied in Chapter 10 to a discussion of the fundamental properties of certain physical systems, while Chapter 11 ends the book with a consideration of periodic distributions. Suitable for a graduate course for engineering and science students or for a senior-level undergraduate course for mathematics majors, this book presumes a knowledge of advanced calculus and the standard theorems on the interchange of limit processes. A broad spectrum of problems has been included to satisfy the diverse needs of various types of students.