Fuzzy Models and Algorithms for Pattern Recognition and Image Processing

Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
Author :
Publisher : Springer Science & Business Media
Total Pages : 786
Release :
ISBN-10 : 9780387245799
ISBN-13 : 0387245790
Rating : 4/5 (99 Downloads)

Book Synopsis Fuzzy Models and Algorithms for Pattern Recognition and Image Processing by : James C. Bezdek

Download or read book Fuzzy Models and Algorithms for Pattern Recognition and Image Processing written by James C. Bezdek and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.

Fuzzy Models and Algorithms for Pattern Recognition and Image Processing

Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
Author :
Publisher : Springer
Total Pages : 0
Release :
ISBN-10 : 0387505202
ISBN-13 : 9780387505206
Rating : 4/5 (02 Downloads)

Book Synopsis Fuzzy Models and Algorithms for Pattern Recognition and Image Processing by : James C. Bezdek

Download or read book Fuzzy Models and Algorithms for Pattern Recognition and Image Processing written by James C. Bezdek and published by Springer. This book was released on 2008-11-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.

Fuzzy Models for Pattern Recognition

Fuzzy Models for Pattern Recognition
Author :
Publisher : Institute of Electrical & Electronics Engineers(IEEE)
Total Pages : 560
Release :
ISBN-10 : UOM:39076001268007
ISBN-13 :
Rating : 4/5 (07 Downloads)

Book Synopsis Fuzzy Models for Pattern Recognition by : James C. Bezdek

Download or read book Fuzzy Models for Pattern Recognition written by James C. Bezdek and published by Institute of Electrical & Electronics Engineers(IEEE). This book was released on 1992 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Rough-Fuzzy Pattern Recognition

Rough-Fuzzy Pattern Recognition
Author :
Publisher : John Wiley & Sons
Total Pages : 312
Release :
ISBN-10 : 9781118004401
ISBN-13 : 111800440X
Rating : 4/5 (01 Downloads)

Book Synopsis Rough-Fuzzy Pattern Recognition by : Pradipta Maji

Download or read book Rough-Fuzzy Pattern Recognition written by Pradipta Maji and published by John Wiley & Sons. This book was released on 2012-02-14 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.

Handbook of Medical Image Processing and Analysis

Handbook of Medical Image Processing and Analysis
Author :
Publisher : Elsevier
Total Pages : 1009
Release :
ISBN-10 : 9780080559148
ISBN-13 : 008055914X
Rating : 4/5 (48 Downloads)

Book Synopsis Handbook of Medical Image Processing and Analysis by : Isaac Bankman

Download or read book Handbook of Medical Image Processing and Analysis written by Isaac Bankman and published by Elsevier. This book was released on 2008-12-24 with total page 1009 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Medical Image Processing and Analysis is a comprehensive compilation of concepts and techniques used for processing and analyzing medical images after they have been generated or digitized. The Handbook is organized into six sections that relate to the main functions: enhancement, segmentation, quantification, registration, visualization, and compression, storage and communication.The second edition is extensively revised and updated throughout, reflecting new technology and research, and includes new chapters on: higher order statistics for tissue segmentation; tumor growth modeling in oncological image analysis; analysis of cell nuclear features in fluorescence microscopy images; imaging and communication in medical and public health informatics; and dynamic mammogram retrieval from web-based image libraries.For those looking to explore advanced concepts and access essential information, this second edition of Handbook of Medical Image Processing and Analysis is an invaluable resource. It remains the most complete single volume reference for biomedical engineers, researchers, professionals and those working in medical imaging and medical image processing.Dr. Isaac N. Bankman is the supervisor of a group that specializes on imaging, laser and sensor systems, modeling, algorithms and testing at the Johns Hopkins University Applied Physics Laboratory. He received his BSc degree in Electrical Engineering from Bogazici University, Turkey, in 1977, the MSc degree in Electronics from University of Wales, Britain, in 1979, and a PhD in Biomedical Engineering from the Israel Institute of Technology, Israel, in 1985. He is a member of SPIE. - Includes contributions from internationally renowned authors from leading institutions - NEW! 35 of 56 chapters have been revised and updated. Additionally, five new chapters have been added on important topics incluling Nonlinear 3D Boundary Detection, Adaptive Algorithms for Cancer Cytological Diagnosis, Dynamic Mammogram Retrieval from Web-Based Image Libraries, Imaging and Communication in Health Informatics and Tumor Growth Modeling in Oncological Image Analysis. - Provides a complete collection of algorithms in computer processing of medical images - Contains over 60 pages of stunning, four-color images

Image Processing and Pattern Recognition

Image Processing and Pattern Recognition
Author :
Publisher : John Wiley & Sons
Total Pages : 564
Release :
ISBN-10 : 9780470404614
ISBN-13 : 0470404612
Rating : 4/5 (14 Downloads)

Book Synopsis Image Processing and Pattern Recognition by : Frank Y. Shih

Download or read book Image Processing and Pattern Recognition written by Frank Y. Shih and published by John Wiley & Sons. This book was released on 2010-05-03 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to the essential principles of image processing and pattern recognition Techniques and applications in the areas of image processing and pattern recognition are growing at an unprecedented rate. Containing the latest state-of-the-art developments in the field, Image Processing and Pattern Recognition presents clear explanations of the fundamentals as well as the most recent applications. It explains the essential principles so readers will not only be able to easily implement the algorithms and techniques, but also lead themselves to discover new problems and applications. Unlike other books on the subject, this volume presents numerous fundamental and advanced image processing algorithms and pattern recognition techniques to illustrate the framework. Scores of graphs and examples, technical assistance, and practical tools illustrate the basic principles and help simplify the problems, allowing students as well as professionals to easily grasp even complicated theories. It also features unique coverage of the most interesting developments and updated techniques, such as image watermarking, digital steganography, document processing and classification, solar image processing and event classification, 3-D Euclidean distance transformation, shortest path planning, soft morphology, recursive morphology, regulated morphology, and sweep morphology. Additional topics include enhancement and segmentation techniques, active learning, feature extraction, neural networks, and fuzzy logic. Featuring supplemental materials for instructors and students, Image Processing and Pattern Recognition is designed for undergraduate seniors and graduate students, engineering and scientific researchers, and professionals who work in signal processing, image processing, pattern recognition, information security, document processing, multimedia systems, and solar physics.

Pattern Recognition with Fuzzy Objective Function Algorithms

Pattern Recognition with Fuzzy Objective Function Algorithms
Author :
Publisher : Springer Science & Business Media
Total Pages : 267
Release :
ISBN-10 : 9781475704501
ISBN-13 : 147570450X
Rating : 4/5 (01 Downloads)

Book Synopsis Pattern Recognition with Fuzzy Objective Function Algorithms by : James C. Bezdek

Download or read book Pattern Recognition with Fuzzy Objective Function Algorithms written by James C. Bezdek and published by Springer Science & Business Media. This book was released on 2013-03-13 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fuzzy set was conceived as a result of an attempt to come to grips with the problem of pattern recognition in the context of imprecisely defined categories. In such cases, the belonging of an object to a class is a matter of degree, as is the question of whether or not a group of objects form a cluster. A pioneering application of the theory of fuzzy sets to cluster analysis was made in 1969 by Ruspini. It was not until 1973, however, when the appearance of the work by Dunn and Bezdek on the Fuzzy ISODATA (or fuzzy c-means) algorithms became a landmark in the theory of cluster analysis, that the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition became clearly established. Since then, the theory of fuzzy clustering has developed rapidly and fruitfully, with the author of the present monograph contributing a major share of what we know today. In their seminal work, Bezdek and Dunn have introduced the basic idea of determining the fuzzy clusters by minimizing an appropriately defined functional, and have derived iterative algorithms for computing the membership functions for the clusters in question. The important issue of convergence of such algorithms has become much better understood as a result of recent work which is described in the monograph.