An Introduction to Fourier Series and Integrals

An Introduction to Fourier Series and Integrals
Author :
Publisher : Courier Corporation
Total Pages : 116
Release :
ISBN-10 : 9780486151793
ISBN-13 : 0486151794
Rating : 4/5 (93 Downloads)

Book Synopsis An Introduction to Fourier Series and Integrals by : Robert T. Seeley

Download or read book An Introduction to Fourier Series and Integrals written by Robert T. Seeley and published by Courier Corporation. This book was released on 2014-02-20 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: A compact, sophomore-to-senior-level guide, Dr. Seeley's text introduces Fourier series in the way that Joseph Fourier himself used them: as solutions of the heat equation in a disk. Emphasizing the relationship between physics and mathematics, Dr. Seeley focuses on results of greatest significance to modern readers. Starting with a physical problem, Dr. Seeley sets up and analyzes the mathematical modes, establishes the principal properties, and then proceeds to apply these results and methods to new situations. The chapter on Fourier transforms derives analogs of the results obtained for Fourier series, which the author applies to the analysis of a problem of heat conduction. Numerous computational and theoretical problems appear throughout the text.

Introduction to the Theory of Fourier's Series and Integrals

Introduction to the Theory of Fourier's Series and Integrals
Author :
Publisher :
Total Pages :
Release :
ISBN-10 : 024362655X
ISBN-13 : 9780243626557
Rating : 4/5 (5X Downloads)

Book Synopsis Introduction to the Theory of Fourier's Series and Integrals by : H. S. Carslaw

Download or read book Introduction to the Theory of Fourier's Series and Integrals written by H. S. Carslaw and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Fourier Integrals in Classical Analysis

Fourier Integrals in Classical Analysis
Author :
Publisher : Cambridge University Press
Total Pages : 250
Release :
ISBN-10 : 9780521434645
ISBN-13 : 0521434645
Rating : 4/5 (45 Downloads)

Book Synopsis Fourier Integrals in Classical Analysis by : Christopher Donald Sogge

Download or read book Fourier Integrals in Classical Analysis written by Christopher Donald Sogge and published by Cambridge University Press. This book was released on 1993-02-26 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced monograph concerned with modern treatments of central problems in harmonic analysis.

Fourier Series and Integral Transforms

Fourier Series and Integral Transforms
Author :
Publisher : Cambridge University Press
Total Pages : 204
Release :
ISBN-10 : 0521597714
ISBN-13 : 9780521597715
Rating : 4/5 (14 Downloads)

Book Synopsis Fourier Series and Integral Transforms by : Allan Pinkus

Download or read book Fourier Series and Integral Transforms written by Allan Pinkus and published by Cambridge University Press. This book was released on 1997-07-10 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Textbook covering the basics of Fourier series, Fourier transforms and Laplace transforms.

An Introduction to Lebesgue Integration and Fourier Series

An Introduction to Lebesgue Integration and Fourier Series
Author :
Publisher : Courier Corporation
Total Pages : 194
Release :
ISBN-10 : 9780486137476
ISBN-13 : 0486137473
Rating : 4/5 (76 Downloads)

Book Synopsis An Introduction to Lebesgue Integration and Fourier Series by : Howard J. Wilcox

Download or read book An Introduction to Lebesgue Integration and Fourier Series written by Howard J. Wilcox and published by Courier Corporation. This book was released on 2012-04-30 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.

Essential Mathematics for the Physical Sciences, Volume 1

Essential Mathematics for the Physical Sciences, Volume 1
Author :
Publisher : Morgan & Claypool Publishers
Total Pages : 167
Release :
ISBN-10 : 9781681744865
ISBN-13 : 1681744864
Rating : 4/5 (65 Downloads)

Book Synopsis Essential Mathematics for the Physical Sciences, Volume 1 by : Brett Borden

Download or read book Essential Mathematics for the Physical Sciences, Volume 1 written by Brett Borden and published by Morgan & Claypool Publishers. This book was released on 2017-10-31 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus asound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations (PDEs) and the special functions introduced. Solving PDEs can't be done, however, outside of the context in which they apply to physical systems. The solutions to PDEs must conform to boundary conditions, a set of additional constraints in space or time to be satisfied at the boundaries of the system, that small part of the universe under study. The first volume is devoted to homogeneous boundary-value problems (BVPs), homogeneous implying a system lacking a forcing function, or source function. The second volume takes up (in addition to other topics) inhomogeneous problems where, in addition to the intrinsic PDE governing a physical field, source functions are an essential part of the system. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well. It is based on the assumption that it follows a math review course, and was designed to coincide with the second quarter of student study, which is dominated by BVPs but also requires an understanding of special functions and Fourier analysis.

The Fourier Integral and Certain of Its Applications

The Fourier Integral and Certain of Its Applications
Author :
Publisher : CUP Archive
Total Pages : 228
Release :
ISBN-10 : 0521358841
ISBN-13 : 9780521358842
Rating : 4/5 (41 Downloads)

Book Synopsis The Fourier Integral and Certain of Its Applications by : Norbert Wiener

Download or read book The Fourier Integral and Certain of Its Applications written by Norbert Wiener and published by CUP Archive. This book was released on 1988-11-17 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book was written from lectures given at the University of Cambridge and maintains throughout a high level of rigour whilst remaining a highly readable and lucid account. Topics covered include the Planchard theory of the existence of Fourier transforms of a function of L2 and Tauberian theorems. The influence of G. H. Hardy is apparent from the presence of an application of the theory to the prime number theorems of Hadamard and de la Vallee Poussin. Both pure and applied mathematicians will welcome the reissue of this classic work. For this reissue, Professor Kahane's Foreword briefly describes the genesis of Wiener's work and its later significance to harmonic analysis and Brownian motion.