Foliations and Geometric Structures

Foliations and Geometric Structures
Author :
Publisher : Springer Science & Business Media
Total Pages : 309
Release :
ISBN-10 : 9781402037207
ISBN-13 : 1402037201
Rating : 4/5 (07 Downloads)

Book Synopsis Foliations and Geometric Structures by : Aurel Bejancu

Download or read book Foliations and Geometric Structures written by Aurel Bejancu and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers basic material on distributions and foliations. This book introduces and builds the tools needed for studying the geometry of foliated manifolds. Its main theme is to investigate the interrelations between foliations of a manifold on the one hand, and the many geometric structures that the manifold may admit on the other hand.

Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds
Author :
Publisher : Oxford University Press on Demand
Total Pages : 378
Release :
ISBN-10 : 9780198570080
ISBN-13 : 0198570082
Rating : 4/5 (80 Downloads)

Book Synopsis Foliations and the Geometry of 3-Manifolds by : Danny Calegari

Download or read book Foliations and the Geometry of 3-Manifolds written by Danny Calegari and published by Oxford University Press on Demand. This book was released on 2007-05-17 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.

Foliations II

Foliations II
Author :
Publisher : American Mathematical Soc.
Total Pages : 562
Release :
ISBN-10 : 9780821808818
ISBN-13 : 0821808818
Rating : 4/5 (18 Downloads)

Book Synopsis Foliations II by : Alberto Candel

Download or read book Foliations II written by Alberto Candel and published by American Mathematical Soc.. This book was released on 2000 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second of two volumes on foliations (the first is Volume 23 of this series). In this volume, three specialized topics are treated: analysis on foliated spaces, characteristic classes of foliations, and foliated three-manifolds. Each of these topics represents deep interaction between foliation theory and another highly developed area of mathematics. In each case, the goal is to provide students and other interested people with a substantial introduction to the topic leading to further study using the extensive available literature.

Geometry, Dynamics And Topology Of Foliations: A First Course

Geometry, Dynamics And Topology Of Foliations: A First Course
Author :
Publisher : World Scientific
Total Pages : 194
Release :
ISBN-10 : 9789813207097
ISBN-13 : 9813207094
Rating : 4/5 (97 Downloads)

Book Synopsis Geometry, Dynamics And Topology Of Foliations: A First Course by : Bruno Scardua

Download or read book Geometry, Dynamics And Topology Of Foliations: A First Course written by Bruno Scardua and published by World Scientific. This book was released on 2017-02-16 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Geometric Theory of Foliations is one of the fields in Mathematics that gathers several distinct domains: Topology, Dynamical Systems, Differential Topology and Geometry, among others. Its great development has allowed a better comprehension of several phenomena of mathematical and physical nature. Our book contains material dating from the origins of the theory of foliations, from the original works of C Ehresmann and G Reeb, up till modern developments.In a suitable choice of topics we are able to cover material in a coherent way bringing the reader to the heart of recent results in the field. A number of theorems, nowadays considered to be classical, like the Reeb Stability Theorem, Haefliger's Theorem, and Novikov Compact leaf Theorem, are proved in the text. The stability theorem of Thurston and the compact leaf theorem of Plante are also thoroughly proved. Nevertheless, these notes are introductory and cover only a minor part of the basic aspects of the rich theory of foliations.

Introduction to Foliations and Lie Groupoids

Introduction to Foliations and Lie Groupoids
Author :
Publisher :
Total Pages : 173
Release :
ISBN-10 : 0511071531
ISBN-13 : 9780511071539
Rating : 4/5 (31 Downloads)

Book Synopsis Introduction to Foliations and Lie Groupoids by : Ieke Moerdijk

Download or read book Introduction to Foliations and Lie Groupoids written by Ieke Moerdijk and published by . This book was released on 2003 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a quick introduction to the theory of foliations and Lie groupoids. It is based on the authors' extensive teaching experience and contains numerous examples and exercises making it ideal either for independent study or as the basis of a graduate course.

Geometry of Pseudo-Finsler Submanifolds

Geometry of Pseudo-Finsler Submanifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 252
Release :
ISBN-10 : 9789401594172
ISBN-13 : 9401594171
Rating : 4/5 (72 Downloads)

Book Synopsis Geometry of Pseudo-Finsler Submanifolds by : Aurel Bejancu

Download or read book Geometry of Pseudo-Finsler Submanifolds written by Aurel Bejancu and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book begins with a new approach to the geometry of pseudo-Finsler manifolds. It also discusses the geometry of pseudo-Finsler manifolds and presents a comparison between the induced and the intrinsic Finsler connections. The Cartan, Berwald, and Rund connections are all investigated. Included also is the study of totally geodesic and other special submanifolds such as curves, surfaces, and hypersurfaces. Audience: The book will be of interest to researchers working on pseudo-Finsler geometry in general, and on pseudo-Finsler submanifolds in particular.

Riemannian Foliations

Riemannian Foliations
Author :
Publisher : Springer Science & Business Media
Total Pages : 348
Release :
ISBN-10 : 9781468486704
ISBN-13 : 1468486705
Rating : 4/5 (04 Downloads)

Book Synopsis Riemannian Foliations by : Molino

Download or read book Riemannian Foliations written by Molino and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foliation theory has its origins in the global analysis of solutions of ordinary differential equations: on an n-dimensional manifold M, an [autonomous] differential equation is defined by a vector field X ; if this vector field has no singularities, then its trajectories form a par tition of M into curves, i.e. a foliation of codimension n - 1. More generally, a foliation F of codimension q on M corresponds to a partition of M into immersed submanifolds [the leaves] of dimension ,--------,- - . - -- p = n - q. The first global image that comes to mind is 1--------;- - - - - - that of a stack of "plaques". 1---------;- - - - - - Viewed laterally [transver 1--------1- - - -- sally], the leaves of such a 1--------1 - - - - -. stacking are the points of a 1--------1--- ----. quotient manifold W of di L..... -' _ mension q. -----~) W M Actually, this image corresponds to an elementary type of folia tion, that one says is "simple". For an arbitrary foliation, it is only l- u L ally [on a "simpIe" open set U] that the foliation appears as a stack of plaques and admits a local quotient manifold. Globally, a leaf L may - - return and cut a simple open set U in several plaques, sometimes even an infinite number of plaques.