Dynamical Systems on 2- and 3-Manifolds

Dynamical Systems on 2- and 3-Manifolds
Author :
Publisher : Springer
Total Pages : 314
Release :
ISBN-10 : 9783319448473
ISBN-13 : 3319448471
Rating : 4/5 (73 Downloads)

Book Synopsis Dynamical Systems on 2- and 3-Manifolds by : Viacheslav Z. Grines

Download or read book Dynamical Systems on 2- and 3-Manifolds written by Viacheslav Z. Grines and published by Springer. This book was released on 2016-11-11 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the topological classification of smooth structurally stable diffeomorphisms on closed orientable 2- and 3-manifolds.The topological classification is one of the main problems of the theory of dynamical systems and the results presented in this book are mostly for dynamical systems satisfying Smale's Axiom A. The main results on the topological classification of discrete dynamical systems are widely scattered among many papers and surveys. This book presents these results fluidly, systematically, and for the first time in one publication. Additionally, this book discusses the recent results on the topological classification of Axiom A diffeomorphisms focusing on the nontrivial effects of the dynamical systems on 2- and 3-manifolds. The classical methods and approaches which are considered to be promising for the further research are also discussed.“br> The reader needs to be familiar with the basic concepts of the qualitative theory of dynamical systems which are presented in Part 1 for convenience. The book is accessible to ambitious undergraduates, graduates, and researchers in dynamical systems and low dimensional topology. This volume consists of 10 chapters; each chapter contains its own set of references and a section on further reading. Proofs are presented with the exact statements of the results. In Chapter 10 the authors briefly state the necessary definitions and results from algebra, geometry and topology. When stating ancillary results at the beginning of each part, the authors refer to other sources which are readily available.

Foliations and the Geometry of 3-Manifolds

Foliations and the Geometry of 3-Manifolds
Author :
Publisher : Oxford University Press on Demand
Total Pages : 378
Release :
ISBN-10 : 9780198570080
ISBN-13 : 0198570082
Rating : 4/5 (80 Downloads)

Book Synopsis Foliations and the Geometry of 3-Manifolds by : Danny Calegari

Download or read book Foliations and the Geometry of 3-Manifolds written by Danny Calegari and published by Oxford University Press on Demand. This book was released on 2007-05-17 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.

Handbook of Dynamical Systems

Handbook of Dynamical Systems
Author :
Publisher : Gulf Professional Publishing
Total Pages : 1099
Release :
ISBN-10 : 9780080532844
ISBN-13 : 0080532845
Rating : 4/5 (44 Downloads)

Book Synopsis Handbook of Dynamical Systems by : B. Fiedler

Download or read book Handbook of Dynamical Systems written by B. Fiedler and published by Gulf Professional Publishing. This book was released on 2002-02-21 with total page 1099 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.

Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds

Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds
Author :
Publisher : Springer
Total Pages : 559
Release :
ISBN-10 : 9401060967
ISBN-13 : 9789401060967
Rating : 4/5 (67 Downloads)

Book Synopsis Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds by : A.K. Prykarpatsky

Download or read book Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds written by A.K. Prykarpatsky and published by Springer. This book was released on 2012-10-10 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent times it has been stated that many dynamical systems of classical mathematical physics and mechanics are endowed with symplectic structures, given in the majority of cases by Poisson brackets. Very often such Poisson structures on corresponding manifolds are canonical, which gives rise to the possibility of producing their hidden group theoretical essence for many completely integrable dynamical systems. It is a well understood fact that great part of comprehensive integrability theories of nonlinear dynamical systems on manifolds is based on Lie-algebraic ideas, by means of which, in particular, the classification of such compatibly bi Hamiltonian and isospectrally Lax type integrable systems has been carried out. Many chapters of this book are devoted to their description, but to our regret so far the work has not been completed. Hereby our main goal in each analysed case consists in separating the basic algebraic essence responsible for the complete integrability, and which is, at the same time, in some sense universal, i. e. , characteristic for all of them. Integrability analysis in the framework of a gradient-holonomic algorithm, devised in this book, is fulfilled through three stages: 1) finding a symplectic structure (Poisson bracket) transforming an original dynamical system into a Hamiltonian form; 2) finding first integrals (action variables or conservation laws); 3) defining an additional set of variables and some functional operator quantities with completely controlled evolutions (for instance, as Lax type representation).

Dynamical Systems And Applications

Dynamical Systems And Applications
Author :
Publisher : World Scientific
Total Pages : 714
Release :
ISBN-10 : 9789814499989
ISBN-13 : 9814499986
Rating : 4/5 (89 Downloads)

Book Synopsis Dynamical Systems And Applications by : Ravi P Agarwal

Download or read book Dynamical Systems And Applications written by Ravi P Agarwal and published by World Scientific. This book was released on 1995-11-07 with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt: World Scientific series in Applicable Analysis (WSSIAA) aims at reporting new developments of high mathematical standard and current interest. Each volume in the series shall be devoted to the mathematical analysis that has been applied or potentially applicable to the solutions of scientific, engineering, and social problems. For the past twenty five years, there has been an explosion of interest in the study of nonlinear dynamical systems. Mathematical techniques developed during this period have been applied to important nonlinear problems ranging from physics and chemistry to ecology and economics. All these developments have made dynamical systems theory an important and attractive branch of mathematics to scientists in many disciplines. This rich mathematical subject has been partially represented in this collection of 45 papers by some of the leading researchers in the area. This volume contains 45 state-of-art articles on the mathematical theory of dynamical systems by leading researchers. It is hoped that this collection will lead new direction in this field.Contributors: B Abraham-Shrauner, V Afraimovich, N U Ahmed, B Aulbach, E J Avila-Vales, F Battelli, J M Blazquez, L Block, T A Burton, R S Cantrell, C Y Chan, P Collet, R Cushman, M Denker, F N Diacu, Y H Ding, N S A El-Sharif, J E Fornaess, M Frankel, R Galeeva, A Galves, V Gershkovich, M Girardi, L Gotusso, J Graczyk, Y Hino, I Hoveijn, V Hutson, P B Kahn, J Kato, J Keesling, S Keras, V Kolmanovskii, N V Minh, V Mioc, K Mischaikow, M Misiurewicz, J W Mooney, M E Muldoon, S Murakami, M Muraskin, A D Myshkis, F Neuman, J C Newby, Y Nishiura, Z Nitecki, M Ohta, G Osipenko, N Ozalp, M Pollicott, Min Qu, Donal O-Regan, E Romanenko, V Roytburd, L Shaikhet, J Shidawara, N Sibony, W-H Steeb, C Stoica, G Swiatek, T Takaishi, N D Thai Son, R Triggiani, A E Tuma, E H Twizell, M Urbanski; T D Van, A Vanderbauwhede, A Veneziani, G Vickers, X Xiang, T Young, Y Zarmi.

Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners

Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners
Author :
Publisher : Springer
Total Pages : 381
Release :
ISBN-10 : 9783540446255
ISBN-13 : 3540446257
Rating : 4/5 (55 Downloads)

Book Synopsis Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners by : Thomas Kerler

Download or read book Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners written by Thomas Kerler and published by Springer. This book was released on 2003-07-01 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the (to date) most general approach to combinatorial constructions of topological quantum field theories (TQFTs) in three dimensions. The authors describe extended TQFTs as double functors between two naturally defined double categories: one of topological nature, made of 3-manifolds with corners, the other of algebraic nature, made of linear categories, functors, vector spaces and maps. Atiyah's conventional notion of TQFTs as well as the notion of modular functor from axiomatic conformal field theory are unified in this concept. A large class of such extended modular catergory is constructed, assigning a double functor to every abelian modular category, which does not have to be semisimple.

Topology '90

Topology '90
Author :
Publisher : Walter de Gruyter
Total Pages : 473
Release :
ISBN-10 : 9783110857726
ISBN-13 : 3110857723
Rating : 4/5 (26 Downloads)

Book Synopsis Topology '90 by : Boris N. Apanasov

Download or read book Topology '90 written by Boris N. Apanasov and published by Walter de Gruyter. This book was released on 2011-10-13 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.