Convex Analysis and Variational Problems

Convex Analysis and Variational Problems
Author :
Publisher : SIAM
Total Pages : 414
Release :
ISBN-10 : 161197108X
ISBN-13 : 9781611971088
Rating : 4/5 (8X Downloads)

Book Synopsis Convex Analysis and Variational Problems by : Ivar Ekeland

Download or read book Convex Analysis and Variational Problems written by Ivar Ekeland and published by SIAM. This book was released on 1999-12-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Convex Analysis and Monotone Operator Theory in Hilbert Spaces
Author :
Publisher : Springer
Total Pages : 624
Release :
ISBN-10 : 9783319483115
ISBN-13 : 3319483110
Rating : 4/5 (15 Downloads)

Book Synopsis Convex Analysis and Monotone Operator Theory in Hilbert Spaces by : Heinz H. Bauschke

Download or read book Convex Analysis and Monotone Operator Theory in Hilbert Spaces written by Heinz H. Bauschke and published by Springer. This book was released on 2017-02-28 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.

Convex Analysis and Variational Problems

Convex Analysis and Variational Problems
Author :
Publisher : Elsevier
Total Pages : 411
Release :
ISBN-10 : 9780080875224
ISBN-13 : 008087522X
Rating : 4/5 (24 Downloads)

Book Synopsis Convex Analysis and Variational Problems by :

Download or read book Convex Analysis and Variational Problems written by and published by Elsevier. This book was released on 1976-01-01 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex Analysis and Variational Problems

Variational Analysis

Variational Analysis
Author :
Publisher : Springer Science & Business Media
Total Pages : 747
Release :
ISBN-10 : 9783642024313
ISBN-13 : 3642024319
Rating : 4/5 (13 Downloads)

Book Synopsis Variational Analysis by : R. Tyrrell Rockafellar

Download or read book Variational Analysis written by R. Tyrrell Rockafellar and published by Springer Science & Business Media. This book was released on 2009-06-26 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.

Convex Analysis and Nonlinear Geometric Elliptic Equations

Convex Analysis and Nonlinear Geometric Elliptic Equations
Author :
Publisher : Springer Science & Business Media
Total Pages : 524
Release :
ISBN-10 : 9783642698811
ISBN-13 : 3642698816
Rating : 4/5 (11 Downloads)

Book Synopsis Convex Analysis and Nonlinear Geometric Elliptic Equations by : Ilya J. Bakelman

Download or read book Convex Analysis and Nonlinear Geometric Elliptic Equations written by Ilya J. Bakelman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Investigations in modem nonlinear analysis rely on ideas, methods and prob lems from various fields of mathematics, mechanics, physics and other applied sciences. In the second half of the twentieth century many prominent, ex emplary problems in nonlinear analysis were subject to intensive study and examination. The united ideas and methods of differential geometry, topology, differential equations and functional analysis as well as other areas of research in mathematics were successfully applied towards the complete solution of com plex problems in nonlinear analysis. It is not possible to encompass in the scope of one book all concepts, ideas, methods and results related to nonlinear analysis. Therefore, we shall restrict ourselves in this monograph to nonlinear elliptic boundary value problems as well as global geometric problems. In order that we may examine these prob lems, we are provided with a fundamental vehicle: The theory of convex bodies and hypersurfaces. In this book we systematically present a series of centrally significant results obtained in the second half of the twentieth century up to the present time. Particular attention is given to profound interconnections between various divisions in nonlinear analysis. The theory of convex functions and bodies plays a crucial role because the ellipticity of differential equations is closely connected with the local and global convexity properties of their solutions. Therefore it is necessary to have a sufficiently large amount of material devoted to the theory of convex bodies and functions and their connections with partial differential equations.

Newton-Type Methods for Optimization and Variational Problems

Newton-Type Methods for Optimization and Variational Problems
Author :
Publisher : Springer
Total Pages : 587
Release :
ISBN-10 : 9783319042473
ISBN-13 : 3319042475
Rating : 4/5 (73 Downloads)

Book Synopsis Newton-Type Methods for Optimization and Variational Problems by : Alexey F. Izmailov

Download or read book Newton-Type Methods for Optimization and Variational Problems written by Alexey F. Izmailov and published by Springer. This book was released on 2014-07-08 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will be useful to researchers and graduate students in the fields of optimization and variational analysis.

Lagrange Multiplier Approach to Variational Problems and Applications

Lagrange Multiplier Approach to Variational Problems and Applications
Author :
Publisher : SIAM
Total Pages : 354
Release :
ISBN-10 : 9780898716498
ISBN-13 : 0898716497
Rating : 4/5 (98 Downloads)

Book Synopsis Lagrange Multiplier Approach to Variational Problems and Applications by : Kazufumi Ito

Download or read book Lagrange Multiplier Approach to Variational Problems and Applications written by Kazufumi Ito and published by SIAM. This book was released on 2008-11-06 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analyses Lagrange multiplier theory and demonstrates its impact on the development of numerical algorithms for variational problems in function spaces.