Contact Manifolds in Riemannian Geometry

Contact Manifolds in Riemannian Geometry
Author :
Publisher : Springer
Total Pages : 153
Release :
ISBN-10 : 9783540381549
ISBN-13 : 3540381546
Rating : 4/5 (49 Downloads)

Book Synopsis Contact Manifolds in Riemannian Geometry by : D. E. Blair

Download or read book Contact Manifolds in Riemannian Geometry written by D. E. Blair and published by Springer. This book was released on 2006-11-14 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Riemannian Geometry of Contact and Symplectic Manifolds

Riemannian Geometry of Contact and Symplectic Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 263
Release :
ISBN-10 : 9781475736045
ISBN-13 : 1475736045
Rating : 4/5 (45 Downloads)

Book Synopsis Riemannian Geometry of Contact and Symplectic Manifolds by : David E. Blair

Download or read book Riemannian Geometry of Contact and Symplectic Manifolds written by David E. Blair and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book endorsed by the Sunyer Prize Committee (A. Weinstein, J. Oesterle et. al.).

On the Hypotheses Which Lie at the Bases of Geometry

On the Hypotheses Which Lie at the Bases of Geometry
Author :
Publisher : Birkhäuser
Total Pages : 181
Release :
ISBN-10 : 9783319260426
ISBN-13 : 3319260421
Rating : 4/5 (26 Downloads)

Book Synopsis On the Hypotheses Which Lie at the Bases of Geometry by : Bernhard Riemann

Download or read book On the Hypotheses Which Lie at the Bases of Geometry written by Bernhard Riemann and published by Birkhäuser. This book was released on 2016-04-19 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents William Clifford’s English translation of Bernhard Riemann’s classic text together with detailed mathematical, historical and philosophical commentary. The basic concepts and ideas, as well as their mathematical background, are provided, putting Riemann’s reasoning into the more general and systematic perspective achieved by later mathematicians and physicists (including Helmholtz, Ricci, Weyl, and Einstein) on the basis of his seminal ideas. Following a historical introduction that positions Riemann’s work in the context of his times, the history of the concept of space in philosophy, physics and mathematics is systematically presented. A subsequent chapter on the reception and influence of the text accompanies the reader from Riemann’s times to contemporary research. Not only mathematicians and historians of the mathematical sciences, but also readers from other disciplines or those with an interest in physics or philosophy will find this work both appealing and insightful.

Riemannian Manifolds

Riemannian Manifolds
Author :
Publisher : Springer Science & Business Media
Total Pages : 232
Release :
ISBN-10 : 9780387227269
ISBN-13 : 0387227261
Rating : 4/5 (69 Downloads)

Book Synopsis Riemannian Manifolds by : John M. Lee

Download or read book Riemannian Manifolds written by John M. Lee and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Introduction to Riemannian Manifolds

Introduction to Riemannian Manifolds
Author :
Publisher : Springer
Total Pages : 447
Release :
ISBN-10 : 9783319917559
ISBN-13 : 3319917552
Rating : 4/5 (59 Downloads)

Book Synopsis Introduction to Riemannian Manifolds by : John M. Lee

Download or read book Introduction to Riemannian Manifolds written by John M. Lee and published by Springer. This book was released on 2019-01-02 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

First Steps in Differential Geometry

First Steps in Differential Geometry
Author :
Publisher : Springer Science & Business Media
Total Pages : 420
Release :
ISBN-10 : 9781461477327
ISBN-13 : 1461477328
Rating : 4/5 (27 Downloads)

Book Synopsis First Steps in Differential Geometry by : Andrew McInerney

Download or read book First Steps in Differential Geometry written by Andrew McInerney and published by Springer Science & Business Media. This book was released on 2013-07-09 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential geometry arguably offers the smoothest transition from the standard university mathematics sequence of the first four semesters in calculus, linear algebra, and differential equations to the higher levels of abstraction and proof encountered at the upper division by mathematics majors. Today it is possible to describe differential geometry as "the study of structures on the tangent space," and this text develops this point of view. This book, unlike other introductory texts in differential geometry, develops the architecture necessary to introduce symplectic and contact geometry alongside its Riemannian cousin. The main goal of this book is to bring the undergraduate student who already has a solid foundation in the standard mathematics curriculum into contact with the beauty of higher mathematics. In particular, the presentation here emphasizes the consequences of a definition and the careful use of examples and constructions in order to explore those consequences.

An Introduction to Differentiable Manifolds and Riemannian Geometry

An Introduction to Differentiable Manifolds and Riemannian Geometry
Author :
Publisher : Academic Press
Total Pages : 441
Release :
ISBN-10 : 9780080873794
ISBN-13 : 0080873790
Rating : 4/5 (94 Downloads)

Book Synopsis An Introduction to Differentiable Manifolds and Riemannian Geometry by :

Download or read book An Introduction to Differentiable Manifolds and Riemannian Geometry written by and published by Academic Press. This book was released on 1975-08-22 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Differentiable Manifolds and Riemannian Geometry