Boundary Value Problems on Time Scales, Volume I

Boundary Value Problems on Time Scales, Volume I
Author :
Publisher : CRC Press
Total Pages : 693
Release :
ISBN-10 : 9781000429848
ISBN-13 : 1000429849
Rating : 4/5 (48 Downloads)

Book Synopsis Boundary Value Problems on Time Scales, Volume I by : Svetlin Georgiev

Download or read book Boundary Value Problems on Time Scales, Volume I written by Svetlin Georgiev and published by CRC Press. This book was released on 2021-10-14 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Value Problems on Time Scales, Volume I is devoted to the qualitative theory of boundary value problems on time scales. Summarizing the most recent contributions in this area, it addresses a wide audience of specialists such as mathematicians, physicists, engineers and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. The text contains two volumes, both published by Chapman & Hall/CRC Press. Volume I presents boundary value problems for first- and second-order dynamic equations on time scales. Volume II investigates boundary value problems for three, four, and higher-order dynamic equations on time scales. Many results to differential equations carry over easily to corresponding results for difference equations, while other results seem to be totally different in nature. Because of these reasons, the theory of dynamic equations is an active area of research. The time-scale calculus can be applied to any field in which dynamic processes are described by discrete or continuous time models. The calculus of time scales has various applications involving noncontinuous domains such as certain bug populations, phytoremediation of metals, wound healing, maximization problems in economics, and traffic problems. Boundary value problems on time scales have been extensively investigated in simulating processes and the phenomena subject to short-time perturbations during their evolution. The material in this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. AUTHORS Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in mathematics from Constantine University, Algeria. He is currently assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior.

Boundary Value Problems on Time Scales, Volume I

Boundary Value Problems on Time Scales, Volume I
Author :
Publisher : CRC Press
Total Pages : 0
Release :
ISBN-10 : 103200293X
ISBN-13 : 9781032002934
Rating : 4/5 (3X Downloads)

Book Synopsis Boundary Value Problems on Time Scales, Volume I by : Svetlin Georgiev

Download or read book Boundary Value Problems on Time Scales, Volume I written by Svetlin Georgiev and published by CRC Press. This book was released on 2024-08-26 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the qualitative theory of boundary value problems on time scales. It summarizes the most recent contributions in this area.

Conformable Dynamic Equations on Time Scales

Conformable Dynamic Equations on Time Scales
Author :
Publisher : CRC Press
Total Pages : 347
Release :
ISBN-10 : 9781000093933
ISBN-13 : 100009393X
Rating : 4/5 (33 Downloads)

Book Synopsis Conformable Dynamic Equations on Time Scales by : Douglas R. Anderson

Download or read book Conformable Dynamic Equations on Time Scales written by Douglas R. Anderson and published by CRC Press. This book was released on 2020-08-29 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of derivatives of non-integer order, known as fractional derivatives, first appeared in the letter between L’Hopital and Leibniz in which the question of a half-order derivative was posed. Since then, many formulations of fractional derivatives have appeared. Recently, a new definition of fractional derivative, called the "fractional conformable derivative," has been introduced. This new fractional derivative is compatible with the classical derivative and it has attracted attention in areas as diverse as mechanics, electronics, and anomalous diffusion. Conformable Dynamic Equations on Time Scales is devoted to the qualitative theory of conformable dynamic equations on time scales. This book summarizes the most recent contributions in this area, and vastly expands on them to conceive of a comprehensive theory developed exclusively for this book. Except for a few sections in Chapter 1, the results here are presented for the first time. As a result, the book is intended for researchers who work on dynamic calculus on time scales and its applications. Features Can be used as a textbook at the graduate level as well as a reference book for several disciplines Suitable for an audience of specialists such as mathematicians, physicists, engineers, and biologists Contains a new definition of fractional derivative About the Authors Douglas R. Anderson is professor and chair of the mathematics department at Concordia College, Moorhead. His research areas of interest include dynamic equations on time scales and Ulam-type stability of difference and dynamic equations. He is also active in investigating the existence of solutions for boundary value problems. Svetlin G. Georgiev is currently professor at Sorbonne University, Paris, France and works in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, dynamic calculus on time scales, and integral equations.

Dynamic Equations on Time Scales

Dynamic Equations on Time Scales
Author :
Publisher : Springer Science & Business Media
Total Pages : 365
Release :
ISBN-10 : 9781461202011
ISBN-13 : 1461202019
Rating : 4/5 (11 Downloads)

Book Synopsis Dynamic Equations on Time Scales by : Martin Bohner

Download or read book Dynamic Equations on Time Scales written by Martin Bohner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

Advances in Dynamic Equations on Time Scales

Advances in Dynamic Equations on Time Scales
Author :
Publisher : Springer Science & Business Media
Total Pages : 354
Release :
ISBN-10 : 9780817682309
ISBN-13 : 0817682309
Rating : 4/5 (09 Downloads)

Book Synopsis Advances in Dynamic Equations on Time Scales by : Martin Bohner

Download or read book Advances in Dynamic Equations on Time Scales written by Martin Bohner and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

Boundary Value Problems on Time Scales, Volume II

Boundary Value Problems on Time Scales, Volume II
Author :
Publisher : CRC Press
Total Pages : 213
Release :
ISBN-10 : 9781000429909
ISBN-13 : 1000429903
Rating : 4/5 (09 Downloads)

Book Synopsis Boundary Value Problems on Time Scales, Volume II by : Svetlin G. Georgiev

Download or read book Boundary Value Problems on Time Scales, Volume II written by Svetlin G. Georgiev and published by CRC Press. This book was released on 2021-10-15 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Value Problems on Time Scales, Volume II is devoted to the qualitative theory of boundary value problems on time scales. Summarizing the most recent contributions in this area, it addresses a wide audience of specialists such as mathematicians, physicists, engineers and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. The text contains two volumes, both published by Chapman & Hall/CRC Press. Volume I presents boundary value problems for first- and second-order dynamic equations on time scales. Volume II investigates boundary value problems for three, four, and higher-order dynamic equations on time scales. Many results to differential equations carry over easily to corresponding results for difference equations, while other results seem to be totally different in nature. Because of these reasons, the theory of dynamic equations is an active area of research. The time-scale calculus can be applied to any field in which dynamic processes are described by discrete or continuous time models. The calculus of time scales has various applications involving noncontinuous domains such as certain bug populations, phytoremediation of metals, wound healing, maximization problems in economics, and traffic problems. Boundary value problems on time scales have been extensively investigated in simulating processes and the phenomena subject to short-time perturbations during their evolution. The material in this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. AUTHORS Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in mathematics from Constantine University, Algeria. He is currently assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior.

Handbook of Fractional Calculus for Engineering and Science

Handbook of Fractional Calculus for Engineering and Science
Author :
Publisher : CRC Press
Total Pages : 236
Release :
ISBN-10 : 9781000540109
ISBN-13 : 1000540103
Rating : 4/5 (09 Downloads)

Book Synopsis Handbook of Fractional Calculus for Engineering and Science by : Harendra Singh

Download or read book Handbook of Fractional Calculus for Engineering and Science written by Harendra Singh and published by CRC Press. This book was released on 2022-02-17 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus is used to model many real-life situations from science and engineering. The book includes different topics associated with such equations and their relevance and significance in various scientific areas of study and research. In this book readers will find several important and useful methods and techniques for solving various types of fractional-order models in science and engineering. The book should be useful for graduate students, PhD students, researchers and educators interested in mathematical modelling, physical sciences, engineering sciences, applied mathematical sciences, applied sciences, and so on. This Handbook: Provides reliable methods for solving fractional-order models in science and engineering. Contains efficient numerical methods and algorithms for engineering-related equations. Contains comparison of various methods for accuracy and validity. Demonstrates the applicability of fractional calculus in science and engineering. Examines qualitative as well as quantitative properties of solutions of various types of science- and engineering-related equations. Readers will find this book to be useful and valuable in increasing and updating their knowledge in this field and will be it will be helpful for engineers, mathematicians, scientist and researchers working on various real-life problems.