Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter

Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter
Author :
Publisher : Springer Nature
Total Pages : 213
Release :
ISBN-10 : 9783030319601
ISBN-13 : 3030319601
Rating : 4/5 (01 Downloads)

Book Synopsis Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter by : Abhijeet Alase

Download or read book Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter written by Abhijeet Alase and published by Springer Nature. This book was released on 2019-11-20 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch’s Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch's Theorem. A cornerstone of electronic band structure and transport theory in crystalline matter, Bloch's Theorem is generalized via a reformulation of the diagonalization problem in terms of corner-modified block-Toeplitz matrices and, physically, by allowing the crystal momentum to take complex values. This formulation provides exact expressions for all the energy eigenvalues and eigenstates of the single-particle Hamiltonian. By precisely capturing the interplay between bulk and boundary properties, this affords an exact analysis of several prototypical models relevant to symmetry-protected topological phases of matter, including a characterization of zero-energy localized boundary excitations in both topological insulators and superconductors. Notably, in combination with suitable matrix factorization techniques, the generalized Bloch Hamiltonian is also shown to provide a natural starting point for a unified derivation of bulk-boundary correspondence for all symmetry classes in one dimension.

Bulk and Boundary Invariants for Complex Topological Insulators

Bulk and Boundary Invariants for Complex Topological Insulators
Author :
Publisher : Springer
Total Pages : 217
Release :
ISBN-10 : 9783319293516
ISBN-13 : 3319293516
Rating : 4/5 (16 Downloads)

Book Synopsis Bulk and Boundary Invariants for Complex Topological Insulators by : Emil Prodan

Download or read book Bulk and Boundary Invariants for Complex Topological Insulators written by Emil Prodan and published by Springer. This book was released on 2016-02-05 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph offers an overview of rigorous results on fermionic topological insulators from the complex classes, namely, those without symmetries or with just a chiral symmetry. Particular focus is on the stability of the topological invariants in the presence of strong disorder, on the interplay between the bulk and boundary invariants and on their dependence on magnetic fields. The first part presents motivating examples and the conjectures put forward by the physics community, together with a brief review of the experimental achievements. The second part develops an operator algebraic approach for the study of disordered topological insulators. This leads naturally to the use of analytical tools from K-theory and non-commutative geometry, such as cyclic cohomology, quantized calculus with Fredholm modules and index pairings. New results include a generalized Streda formula and a proof of the delocalized nature of surface states in topological insulators with non-trivial invariants. The concluding chapter connects the invariants to measurable quantities and thus presents a refined physical characterization of the complex topological insulators. This book is intended for advanced students in mathematical physics and researchers alike.

A Short Course on Topological Insulators

A Short Course on Topological Insulators
Author :
Publisher : Springer
Total Pages : 176
Release :
ISBN-10 : 9783319256078
ISBN-13 : 3319256076
Rating : 4/5 (78 Downloads)

Book Synopsis A Short Course on Topological Insulators by : János K. Asbóth

Download or read book A Short Course on Topological Insulators written by János K. Asbóth and published by Springer. This book was released on 2016-02-22 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This course-based primer provides newcomers to the field with a concise introduction to some of the core topics in the emerging field of topological insulators. The aim is to provide a basic understanding of edge states, bulk topological invariants, and of the bulk--boundary correspondence with as simple mathematical tools as possible. The present approach uses noninteracting lattice models of topological insulators, building gradually on these to arrive from the simplest one-dimensional case (the Su-Schrieffer-Heeger model for polyacetylene) to two-dimensional time-reversal invariant topological insulators (the Bernevig-Hughes-Zhang model for HgTe). In each case the discussion of simple toy models is followed by the formulation of the general arguments regarding topological insulators. The only prerequisite for the reader is a working knowledge in quantum mechanics, the relevant solid state physics background is provided as part of this self-contained text, which is complemented by end-of-chapter problems.

Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors
Author :
Publisher : Princeton University Press
Total Pages : 264
Release :
ISBN-10 : 9781400846733
ISBN-13 : 1400846730
Rating : 4/5 (33 Downloads)

Book Synopsis Topological Insulators and Topological Superconductors by : B. Andrei Bernevig

Download or read book Topological Insulators and Topological Superconductors written by B. Andrei Bernevig and published by Princeton University Press. This book was released on 2013-04-07 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Topology in Condensed Matter

Topology in Condensed Matter
Author :
Publisher : Springer Science & Business Media
Total Pages : 263
Release :
ISBN-10 : 9783540312642
ISBN-13 : 3540312641
Rating : 4/5 (42 Downloads)

Book Synopsis Topology in Condensed Matter by : Michael I. Monastyrsky

Download or read book Topology in Condensed Matter written by Michael I. Monastyrsky and published by Springer Science & Business Media. This book was released on 2006-02-04 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

Topological Aspects of Condensed Matter Physics

Topological Aspects of Condensed Matter Physics
Author :
Publisher : Oxford University Press
Total Pages : 705
Release :
ISBN-10 : 9780191088797
ISBN-13 : 019108879X
Rating : 4/5 (97 Downloads)

Book Synopsis Topological Aspects of Condensed Matter Physics by : Claudio Chamon

Download or read book Topological Aspects of Condensed Matter Physics written by Claudio Chamon and published by Oxford University Press. This book was released on 2017-02-16 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains lecture notes by world experts on one of the most rapidly growing fields of research in physics. Topological quantum phenomena are being uncovered at unprecedented rates in novel material systems. The consequences are far reaching, from the possibility of carrying currents and performing computations without dissipation of energy, to the possibility of realizing platforms for topological quantum computation.The pedagogical lectures contained in this book are an excellent introduction to this blooming field. The lecture notes are intended for graduate students or advanced undergraduate students in physics and mathematics who want to immerse in this exciting XXI century physics topic. This Les Houches Summer School presents an overview of this field, along with a sense of its origins and its placement on the map of fundamental physics advancements. The School comprised a set of basic lectures (part 1) aimed at a pedagogical introduction of the fundamental concepts, which was accompanied by more advanced lectures (part 2) covering individual topics at the forefront of today's research in condensed-matter physics.

Mechanics and Physics of Structured Media

Mechanics and Physics of Structured Media
Author :
Publisher : Academic Press
Total Pages : 528
Release :
ISBN-10 : 9780323906531
ISBN-13 : 0323906532
Rating : 4/5 (31 Downloads)

Book Synopsis Mechanics and Physics of Structured Media by : Igor Andrianov

Download or read book Mechanics and Physics of Structured Media written by Igor Andrianov and published by Academic Press. This book was released on 2022-01-20 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics and Physics of Structured Media: Asymptotic and Integral Methods of Leonid Filshtinsky provides unique information on the macroscopic properties of various composite materials and the mathematical techniques key to understanding their physical behaviors. The book is centered around the arguably monumental work of Leonid Filshtinsky. His last works provide insight on fracture in electromagnetic-elastic systems alongside approaches for solving problems in mechanics of solid materials. Asymptotic methods, the method of complex potentials, wave mechanics, viscosity of suspensions, conductivity, vibration and buckling of functionally graded plates, and critical phenomena in various random systems are all covered at length. Other sections cover boundary value problems in fracture mechanics, two-phase model methods for heterogeneous nanomaterials, and the propagation of acoustic, electromagnetic, and elastic waves in a one-dimensional periodic two-component material. - Covers key issues around the mechanics of structured media, including modeling techniques, fracture mechanics in various composite materials, the fundamentals of integral equations, wave mechanics, and more - Discusses boundary value problems of materials, techniques for predicting elasticity of composites, and heterogeneous nanomaterials and their statistical description - Includes insights on asymptotic methods, wave mechanics, the mechanics of piezo-materials, and more - Applies homogenization concepts to various physical systems