Astrostatistics and Data Mining

Astrostatistics and Data Mining
Author :
Publisher : Springer Science & Business Media
Total Pages : 259
Release :
ISBN-10 : 9781461433231
ISBN-13 : 1461433231
Rating : 4/5 (31 Downloads)

Book Synopsis Astrostatistics and Data Mining by : Luis Manuel Sarro

Download or read book Astrostatistics and Data Mining written by Luis Manuel Sarro and published by Springer Science & Business Media. This book was released on 2012-08-04 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​​​​​ ​This volume provides an overview of the field of Astrostatistics understood as the sub-discipline dedicated to the statistical analysis of astronomical data. It presents examples of the application of the various methodologies now available to current open issues in astronomical research. The technical aspects related to the scientific analysis of the upcoming petabyte-scale databases are emphasized given the importance that scalable Knowledge Discovery techniques will have for the full exploitation of these databases. Based on the 2011 Astrostatistics and Data Mining in Large Astronomical Databases conference and school, this volume gathers examples of the work by leading authors in the areas of Astrophysics and Statistics, including a significant contribution from the various teams that prepared for the processing and analysis of the Gaia data.

Statistics, Data Mining, and Machine Learning in Astronomy

Statistics, Data Mining, and Machine Learning in Astronomy
Author :
Publisher : Princeton University Press
Total Pages : 550
Release :
ISBN-10 : 9780691151687
ISBN-13 : 0691151687
Rating : 4/5 (87 Downloads)

Book Synopsis Statistics, Data Mining, and Machine Learning in Astronomy by : Željko Ivezić

Download or read book Statistics, Data Mining, and Machine Learning in Astronomy written by Željko Ivezić and published by Princeton University Press. This book was released on 2014-01-12 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers

Statistical Methods for Astronomical Data Analysis

Statistical Methods for Astronomical Data Analysis
Author :
Publisher : Springer
Total Pages : 356
Release :
ISBN-10 : 9781493915071
ISBN-13 : 149391507X
Rating : 4/5 (71 Downloads)

Book Synopsis Statistical Methods for Astronomical Data Analysis by : Asis Kumar Chattopadhyay

Download or read book Statistical Methods for Astronomical Data Analysis written by Asis Kumar Chattopadhyay and published by Springer. This book was released on 2014-10-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for astronomical problems, including regression techniques, along with their usefulness for data set problems related to size and dimension. Analysis of missing data is an important part of the book because of its significance for work with astronomical data. Both existing and new techniques related to dimension reduction and clustering are illustrated through examples. There is detailed coverage of applications useful for classification, discrimination, data mining and time series analysis. Later chapters explain simulation techniques useful for the development of physical models where it is difficult or impossible to collect data. Finally, coverage of the many R programs for techniques discussed makes this book a fantastic practical reference. Readers may apply what they learn directly to their data sets in addition to the data sets included by the authors.

Advances in Machine Learning and Data Mining for Astronomy

Advances in Machine Learning and Data Mining for Astronomy
Author :
Publisher : CRC Press
Total Pages : 744
Release :
ISBN-10 : 9781439841747
ISBN-13 : 1439841748
Rating : 4/5 (47 Downloads)

Book Synopsis Advances in Machine Learning and Data Mining for Astronomy by : Michael J. Way

Download or read book Advances in Machine Learning and Data Mining for Astronomy written by Michael J. Way and published by CRC Press. This book was released on 2012-03-29 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines

Astrostatistics

Astrostatistics
Author :
Publisher : CRC Press
Total Pages : 242
Release :
ISBN-10 : 0412983915
ISBN-13 : 9780412983917
Rating : 4/5 (15 Downloads)

Book Synopsis Astrostatistics by : Gutti Jogesh Babu

Download or read book Astrostatistics written by Gutti Jogesh Babu and published by CRC Press. This book was released on 1996-08-01 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern astronomers encounter a vast range of challenging statistical problems, yet few are familiar with the wealth of techniques developed by statisticians. Conversely, few statisticians deal with the compelling problems confronted in astronomy. Astrostatistics bridges this gap. Authored by a statistician-astronomer team, it provides professionals and advanced students in both fields with exposure to issues of mutual interest. In the first half of the book the authors introduce statisticians to stellar, galactic, and cosmological astronomy and discuss the complex character of astronomical data. For astronomers, they introduce the statistical principles of nonparametrics, multivariate analysis, time series analysis, density estimation, and resampling methods. The second half of the book is organized by statistical topic. Each chapter contains examples of problems encountered astronomical research and highlights methodological issues. The final chapter explores some controversial issues in astronomy that have a strong statistical component. The authors provide an extensive bibliography and references to software for implementing statistical methods. The "marriage" of astronomy and statistics is a natural one and benefits both disciplines. Astronomers need the tools and methods of statistics to interpret the vast amount of data they generate, and the issues related to astronomical data pose intriguing challenges for statisticians. Astrostatistics paves the way to improved statistical analysis of astronomical data and provides a common ground for future collaboration between the two fields.

Modern Statistical Methods for Astronomy

Modern Statistical Methods for Astronomy
Author :
Publisher : Cambridge University Press
Total Pages : 495
Release :
ISBN-10 : 9780521767279
ISBN-13 : 052176727X
Rating : 4/5 (79 Downloads)

Book Synopsis Modern Statistical Methods for Astronomy by : Eric D. Feigelson

Download or read book Modern Statistical Methods for Astronomy written by Eric D. Feigelson and published by Cambridge University Press. This book was released on 2012-07-12 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Statistical Methods for Astronomy: With R Applications.

Big Data in Astronomy

Big Data in Astronomy
Author :
Publisher : Elsevier
Total Pages : 440
Release :
ISBN-10 : 9780128190852
ISBN-13 : 012819085X
Rating : 4/5 (52 Downloads)

Book Synopsis Big Data in Astronomy by : Linghe Kong

Download or read book Big Data in Astronomy written by Linghe Kong and published by Elsevier. This book was released on 2020-06-13 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Radio Astronomy: Scientific Data Processing for Advanced Radio Telescopes provides the latest research developments in big data methods and techniques for radio astronomy. Providing examples from such projects as the Square Kilometer Array (SKA), the world's largest radio telescope that generates over an Exabyte of data every day, the book offers solutions for coping with the challenges and opportunities presented by the exponential growth of astronomical data. Presenting state-of-the-art results and research, this book is a timely reference for both practitioners and researchers working in radio astronomy, as well as students looking for a basic understanding of big data in astronomy. - Bridges the gap between radio astronomy and computer science - Includes coverage of the observation lifecycle as well as data collection, processing and analysis - Presents state-of-the-art research and techniques in big data related to radio astronomy - Utilizes real-world examples, such as Square Kilometer Array (SKA) and Five-hundred-meter Aperture Spherical radio Telescope (FAST)