Applying Contemporary Statistical Techniques

Applying Contemporary Statistical Techniques
Author :
Publisher : Elsevier
Total Pages : 676
Release :
ISBN-10 : 9780080527512
ISBN-13 : 0080527515
Rating : 4/5 (12 Downloads)

Book Synopsis Applying Contemporary Statistical Techniques by : Rand R. Wilcox

Download or read book Applying Contemporary Statistical Techniques written by Rand R. Wilcox and published by Elsevier. This book was released on 2003-01-16 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advances in risk-based methods * Features many illustrations and examples using data from real studies * Describes and illustrates easy-to-use s-plus functions for applying cutting-edge techniques * Covers many contemporary ANOVA (analysis of variance) and regression methods not found in other books

Understanding and Applying Basic Statistical Methods Using R

Understanding and Applying Basic Statistical Methods Using R
Author :
Publisher : John Wiley & Sons
Total Pages : 531
Release :
ISBN-10 : 9781119061410
ISBN-13 : 1119061415
Rating : 4/5 (10 Downloads)

Book Synopsis Understanding and Applying Basic Statistical Methods Using R by : Rand R. Wilcox

Download or read book Understanding and Applying Basic Statistical Methods Using R written by Rand R. Wilcox and published by John Wiley & Sons. This book was released on 2016-05-16 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Features a straightforward and concise resource for introductory statistical concepts, methods, and techniques using R Understanding and Applying Basic Statistical Methods Using R uniquely bridges the gap between advances in the statistical literature and methods routinely used by non-statisticians. Providing a conceptual basis for understanding the relative merits and applications of these methods, the book features modern insights and advances relevant to basic techniques in terms of dealing with non-normality, outliers, heteroscedasticity (unequal variances), and curvature. Featuring a guide to R, the book uses R programming to explore introductory statistical concepts and standard methods for dealing with known problems associated with classic techniques. Thoroughly class-room tested, the book includes sections that focus on either R programming or computational details to help the reader become acquainted with basic concepts and principles essential in terms of understanding and applying the many methods currently available. Covering relevant material from a wide range of disciplines, Understanding and Applying Basic Statistical Methods Using R also includes: Numerous illustrations and exercises that use data to demonstrate the practical importance of multiple perspectives Discussions on common mistakes such as eliminating outliers and applying standard methods based on means using the remaining data Detailed coverage on R programming with descriptions on how to apply both classic and more modern methods using R A companion website with the data and solutions to all of the exercises Understanding and Applying Basic Statistical Methods Using R is an ideal textbook for an undergraduate and graduate-level statistics courses in the science and/or social science departments. The book can also serve as a reference for professional statisticians and other practitioners looking to better understand modern statistical methods as well as R programming. Rand R. Wilcox, PhD, is Professor in the Department of Psychology at the University of Southern California, Fellow of the Association for Psychological Science, and an associate editor for four statistics journals. He is also a member of the International Statistical Institute. The author of more than 320 articles published in a variety of statistical journals, he is also the author eleven other books on statistics. Dr. Wilcox is creator of WRS (Wilcox’ Robust Statistics), which is an R package for performing robust statistical methods. His main research interest includes statistical methods, particularly robust methods for comparing groups and studying associations.

Contemporary Statistical Models for the Plant and Soil Sciences

Contemporary Statistical Models for the Plant and Soil Sciences
Author :
Publisher : CRC Press
Total Pages : 762
Release :
ISBN-10 : 9781420040197
ISBN-13 : 1420040197
Rating : 4/5 (97 Downloads)

Book Synopsis Contemporary Statistical Models for the Plant and Soil Sciences by : Oliver Schabenberger

Download or read book Contemporary Statistical Models for the Plant and Soil Sciences written by Oliver Schabenberger and published by CRC Press. This book was released on 2001-11-13 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite its many origins in agronomic problems, statistics today is often unrecognizable in this context. Numerous recent methodological approaches and advances originated in other subject-matter areas and agronomists frequently find it difficult to see their immediate relation to questions that their disciplines raise. On the other hand, statisticians often fail to recognize the riches of challenging data analytical problems contemporary plant and soil science provides. The first book to integrate modern statistics with crop, plant and soil science, Contemporary Statistical Models for the Plant and Soil Sciences bridges this gap. The breadth and depth of topics covered is unusual. Each of the main chapters could be a textbook in its own right on a particular class of data structures or models. The cogent presentation in one text allows research workers to apply modern statistical methods that otherwise are scattered across several specialized texts. The combination of theory and application orientation conveys ìwhyî a particular method works and ìhowî it is put in to practice. About the downloadable resources The accompanying downloadable resources are a key component of the book. For each of the main chapters additional sections of text are available that cover mathematical derivations, special topics, and supplementary applications. It supplies the data sets and SAS code for all applications and examples in the text, macros that the author developed, and SAS tutorials ranging from basic data manipulation to advanced programming techniques and publication quality graphics. Contemporary statistical models can not be appreciated to their full potential without a good understanding of theory. They also can not be applied to their full potential without the aid of statistical software. Contemporary Statistical Models for the Plant and Soil Science provides the essential mix of theory and applications of statistical methods pertinent to research in life sciences.

Modern Statistics for the Social and Behavioral Sciences

Modern Statistics for the Social and Behavioral Sciences
Author :
Publisher : CRC Press
Total Pages : 862
Release :
ISBN-10 : 9781439834565
ISBN-13 : 1439834563
Rating : 4/5 (65 Downloads)

Book Synopsis Modern Statistics for the Social and Behavioral Sciences by : Rand Wilcox

Download or read book Modern Statistics for the Social and Behavioral Sciences written by Rand Wilcox and published by CRC Press. This book was released on 2011-08-05 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to learning how to apply classic statistical methods, students need to understand when these methods perform well, and when and why they can be highly unsatisfactory. Modern Statistics for the Social and Behavioral Sciences illustrates how to use R to apply both standard and modern methods to correct known problems with classic techniques. Numerous illustrations provide a conceptual basis for understanding why practical problems with classic methods were missed for so many years, and why modern techniques have practical value. Designed for a two-semester, introductory course for graduate students in the social sciences, this text introduces three major advances in the field: Early studies seemed to suggest that normality can be assumed with relatively small sample sizes due to the central limit theorem. However, crucial issues were missed. Vastly improved methods are now available for dealing with non-normality. The impact of outliers and heavy-tailed distributions on power and our ability to obtain an accurate assessment of how groups differ and variables are related is a practical concern when using standard techniques, regardless of how large the sample size might be. Methods for dealing with this insight are described. The deleterious effects of heteroscedasticity on conventional ANOVA and regression methods are much more serious than once thought. Effective techniques for dealing heteroscedasticity are described and illustrated. Requiring no prior training in statistics, Modern Statistics for the Social and Behavioral Sciences provides a graduate-level introduction to basic, routinely used statistical techniques relevant to the social and behavioral sciences. It describes and illustrates methods developed during the last half century that deal with known problems associated with classic techniques. Espousing the view that no single method is always best, it imparts a general understanding of the relative merits of various techniques so that the choice of method can be made in an informed manner.

Modern Applied Statistics with S-PLUS

Modern Applied Statistics with S-PLUS
Author :
Publisher : Springer Science & Business Media
Total Pages : 562
Release :
ISBN-10 : 9781475727197
ISBN-13 : 1475727194
Rating : 4/5 (97 Downloads)

Book Synopsis Modern Applied Statistics with S-PLUS by : William N. Venables

Download or read book Modern Applied Statistics with S-PLUS written by William N. Venables and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to using the power of S-PLUS to perform statistical analyses, providing both an introduction to the program and a course in modern statistical methods. Readers are assumed to have a basic grounding in statistics, thus the book is intended for would-be users, as well as students and researchers using statistics. Throughout, the emphasis is on presenting practical problems and full analyses of real data sets, with many of the methods discussed being modern approaches to topics such as linear and non-linear regression models, robust and smooth regression methods, survival analysis, multivariate analysis, tree-based methods, time series, spatial statistics, and classification. This second edition is intended for users of S-PLUS 3.3, or later, and covers both Windows and UNIX. It treats the recent developments in graphics and new statistical functionality, including bootstraping, mixed effects linear and non-linear models, factor analysis, and regression with autocorrelated errors. The authors have written several software libraries which enhance S-PLUS, and these, plus all the datasets used, are available on the Internet.

Modern Statistics with R

Modern Statistics with R
Author :
Publisher : CRC Press
Total Pages : 0
Release :
ISBN-10 : 103251244X
ISBN-13 : 9781032512440
Rating : 4/5 (4X Downloads)

Book Synopsis Modern Statistics with R by : Måns Thulin

Download or read book Modern Statistics with R written by Måns Thulin and published by CRC Press. This book was released on 2024-08-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Modern Statistical Methods for HCI

Modern Statistical Methods for HCI
Author :
Publisher : Springer
Total Pages : 359
Release :
ISBN-10 : 9783319266336
ISBN-13 : 3319266330
Rating : 4/5 (36 Downloads)

Book Synopsis Modern Statistical Methods for HCI by : Judy Robertson

Download or read book Modern Statistical Methods for HCI written by Judy Robertson and published by Springer. This book was released on 2016-03-22 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book critically reflects on current statistical methods used in Human-Computer Interaction (HCI) and introduces a number of novel methods to the reader. Covering many techniques and approaches for exploratory data analysis including effect and power calculations, experimental design, event history analysis, non-parametric testing and Bayesian inference; the research contained in this book discusses how to communicate statistical results fairly, as well as presenting a general set of recommendations for authors and reviewers to improve the quality of statistical analysis in HCI. Each chapter presents [R] code for running analyses on HCI examples and explains how the results can be interpreted. Modern Statistical Methods for HCI is aimed at researchers and graduate students who have some knowledge of “traditional” null hypothesis significance testing, but who wish to improve their practice by using techniques which have recently emerged from statistics and related fields. This book critically evaluates current practices within the field and supports a less rigid, procedural view of statistics in favour of fair statistical communication.