A General Introduction to Data Analytics

A General Introduction to Data Analytics
Author :
Publisher : John Wiley & Sons
Total Pages : 352
Release :
ISBN-10 : 9781119296249
ISBN-13 : 1119296242
Rating : 4/5 (49 Downloads)

Book Synopsis A General Introduction to Data Analytics by : João Moreira

Download or read book A General Introduction to Data Analytics written by João Moreira and published by John Wiley & Sons. This book was released on 2018-07-18 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the principles and methods of data analysis that does not require knowledge of statistics or programming A General Introduction to Data Analytics is an essential guide to understand and use data analytics. This book is written using easy-to-understand terms and does not require familiarity with statistics or programming. The authors—noted experts in the field—highlight an explanation of the intuition behind the basic data analytics techniques. The text also contains exercises and illustrative examples. Thought to be easily accessible to non-experts, the book provides motivation to the necessity of analyzing data. It explains how to visualize and summarize data, and how to find natural groups and frequent patterns in a dataset. The book also explores predictive tasks, be them classification or regression. Finally, the book discusses popular data analytic applications, like mining the web, information retrieval, social network analysis, working with text, and recommender systems. The learning resources offer: A guide to the reasoning behind data mining techniques A unique illustrative example that extends throughout all the chapters Exercises at the end of each chapter and larger projects at the end of each of the text’s two main parts Together with these learning resources, the book can be used in a 13-week course guide, one chapter per course topic. The book was written in a format that allows the understanding of the main data analytics concepts by non-mathematicians, non-statisticians and non-computer scientists interested in getting an introduction to data science. A General Introduction to Data Analytics is a basic guide to data analytics written in highly accessible terms.

Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy

Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy
Author :
Publisher :
Total Pages : 88
Release :
ISBN-10 : 1081762462
ISBN-13 : 9781081762469
Rating : 4/5 (62 Downloads)

Book Synopsis Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy by : Oliver Theobald

Download or read book Data Analytics for Absolute Beginners: a Deconstructed Guide to Data Literacy written by Oliver Theobald and published by . This book was released on 2019-07-21 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: While exposure to data has become more or less a daily ritual for the rank-and-file knowledge worker, true understanding-treated in this book as data literacy-resides in knowing what lies behind the data. Everything from the data's source to the specific choice of input variables, algorithmic transformations, and visual representation shape the accuracy, relevance, and value of the data and mark its journey from raw data to business insight. It's also important to grasp the terminology and basic concepts of data analytics as much as it is to have the financial literacy to be successful as a decisionmaker in the business world. In this book, we make sense of data analytics without the assumption that you understand specific data science terminology or advanced programming languages to set you on your path. Topics covered in this book: Data Mining Big Data Machine Learning Alternative Data Data Management Web Scraping Regression Analysis Clustering Analysis Association Analysis Data Visualization Business Intelligence

An Introduction to Data Analysis

An Introduction to Data Analysis
Author :
Publisher : SAGE
Total Pages : 363
Release :
ISBN-10 : 9781526452313
ISBN-13 : 1526452316
Rating : 4/5 (13 Downloads)

Book Synopsis An Introduction to Data Analysis by : Tiffany Bergin

Download or read book An Introduction to Data Analysis written by Tiffany Bergin and published by SAGE. This book was released on 2018-10-15 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering the general process of data analysis to finding, collecting, organizing, and presenting data, this book offers a complete introduction to the fundamentals of data analysis. Using real-world case studies as illustrations, it helps readers understand theories behind and develop techniques for conducting quantitative, qualitative, and mixed methods data analysis. With an easy-to-follow organization and clear, jargon-free language, it helps readers not only become proficient data analysts, but also develop the critical thinking skills necessary to assess analyses presented by others in both academic research and the popular media. It includes advice on: - Data analysis frameworks - Validity and credibility of data - Sampling techniques - Data management - The big data phenomenon - Data visualisation - Effective data communication Whether you are new to data analysis or looking for a quick-reference guide to key principles of the process, this book will help you uncover nuances, complexities, patterns, and relationships among all types of data.

Introduction to Data Science

Introduction to Data Science
Author :
Publisher : CRC Press
Total Pages : 836
Release :
ISBN-10 : 9781000708035
ISBN-13 : 1000708039
Rating : 4/5 (35 Downloads)

Book Synopsis Introduction to Data Science by : Rafael A. Irizarry

Download or read book Introduction to Data Science written by Rafael A. Irizarry and published by CRC Press. This book was released on 2019-11-20 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Data Science: Data Analysis and Prediction Algorithms with R introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression, and machine learning. It also helps you develop skills such as R programming, data wrangling, data visualization, predictive algorithm building, file organization with UNIX/Linux shell, version control with Git and GitHub, and reproducible document preparation. This book is a textbook for a first course in data science. No previous knowledge of R is necessary, although some experience with programming may be helpful. The book is divided into six parts: R, data visualization, statistics with R, data wrangling, machine learning, and productivity tools. Each part has several chapters meant to be presented as one lecture. The author uses motivating case studies that realistically mimic a data scientist’s experience. He starts by asking specific questions and answers these through data analysis so concepts are learned as a means to answering the questions. Examples of the case studies included are: US murder rates by state, self-reported student heights, trends in world health and economics, the impact of vaccines on infectious disease rates, the financial crisis of 2007-2008, election forecasting, building a baseball team, image processing of hand-written digits, and movie recommendation systems. The statistical concepts used to answer the case study questions are only briefly introduced, so complementing with a probability and statistics textbook is highly recommended for in-depth understanding of these concepts. If you read and understand the chapters and complete the exercises, you will be prepared to learn the more advanced concepts and skills needed to become an expert.

An Introduction to Data Analysis in R

An Introduction to Data Analysis in R
Author :
Publisher : Springer Nature
Total Pages : 289
Release :
ISBN-10 : 9783030489977
ISBN-13 : 3030489973
Rating : 4/5 (77 Downloads)

Book Synopsis An Introduction to Data Analysis in R by : Alfonso Zamora Saiz

Download or read book An Introduction to Data Analysis in R written by Alfonso Zamora Saiz and published by Springer Nature. This book was released on 2020-07-27 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook offers an easy-to-follow, practical guide to modern data analysis using the programming language R. The chapters cover topics such as the fundamentals of programming in R, data collection and preprocessing, including web scraping, data visualization, and statistical methods, including multivariate analysis, and feature exercises at the end of each section. The text requires only basic statistics skills, as it strikes a balance between statistical and mathematical understanding and implementation in R, with a special emphasis on reproducible examples and real-world applications. This textbook is primarily intended for undergraduate students of mathematics, statistics, physics, economics, finance and business who are pursuing a career in data analytics. It will be equally valuable for master students of data science and industry professionals who want to conduct data analyses.

A Hands-On Introduction to Data Science

A Hands-On Introduction to Data Science
Author :
Publisher : Cambridge University Press
Total Pages : 459
Release :
ISBN-10 : 9781108472449
ISBN-13 : 1108472443
Rating : 4/5 (49 Downloads)

Book Synopsis A Hands-On Introduction to Data Science by : Chirag Shah

Download or read book A Hands-On Introduction to Data Science written by Chirag Shah and published by Cambridge University Press. This book was released on 2020-04-02 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems

An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems
Author :
Publisher : SIAM
Total Pages : 275
Release :
ISBN-10 : 9781611974911
ISBN-13 : 1611974917
Rating : 4/5 (11 Downloads)

Book Synopsis An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems by : Luis Tenorio

Download or read book An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems written by Luis Tenorio and published by SIAM. This book was released on 2017-07-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.