Machine Learning

Machine Learning
Author :
Publisher : Springer
Total Pages : 373
Release :
ISBN-10 : 9783319949895
ISBN-13 : 3319949896
Rating : 4/5 (95 Downloads)

Book Synopsis Machine Learning by : RODRIGO F MELLO

Download or read book Machine Learning written by RODRIGO F MELLO and published by Springer. This book was released on 2018-08-01 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the Statistical Learning Theory in a detailed and easy to understand way, by using practical examples, algorithms and source codes. It can be used as a textbook in graduation or undergraduation courses, for self-learners, or as reference with respect to the main theoretical concepts of Machine Learning. Fundamental concepts of Linear Algebra and Optimization applied to Machine Learning are provided, as well as source codes in R, making the book as self-contained as possible. It starts with an introduction to Machine Learning concepts and algorithms such as the Perceptron, Multilayer Perceptron and the Distance-Weighted Nearest Neighbors with examples, in order to provide the necessary foundation so the reader is able to understand the Bias-Variance Dilemma, which is the central point of the Statistical Learning Theory. Afterwards, we introduce all assumptions and formalize the Statistical Learning Theory, allowing the practical study of different classification algorithms. Then, we proceed with concentration inequalities until arriving to the Generalization and the Large-Margin bounds, providing the main motivations for the Support Vector Machines. From that, we introduce all necessary optimization concepts related to the implementation of Support Vector Machines. To provide a next stage of development, the book finishes with a discussion on SVM kernels as a way and motivation to study data spaces and improve classification results.

A Practical Approach for Machine Learning and Deep Learning Algorithms

A Practical Approach for Machine Learning and Deep Learning Algorithms
Author :
Publisher : BPB Publications
Total Pages : 323
Release :
ISBN-10 : 9789388511131
ISBN-13 : 9388511131
Rating : 4/5 (31 Downloads)

Book Synopsis A Practical Approach for Machine Learning and Deep Learning Algorithms by : Abhishek Kumar Pandey

Download or read book A Practical Approach for Machine Learning and Deep Learning Algorithms written by Abhishek Kumar Pandey and published by BPB Publications. This book was released on 2019-09-18 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Guide covering topics from machine learning, regression models, neural network to tensor flow DESCRIPTION Machine learning is mostly sought in the research field and has become an integral part of many research projects nowadays including commercial applications, as well as academic research. Application of machine learning ranges from finding friends on social networking sites to medical diagnosis and even satellite processing. In this book, we have made an honest effort to make the concepts of machine learning easy and give basic programs in MATLAB right from the installation part. Although the real-time application of machine learning is endless, however, the basic concepts and algorithms are discussed using MATLAB language so that not only graduation students but also researchers are benefitted from it. KEY FEATURES Machine learning in MATLAB using basic concepts and algorithms. Deriving and accessing of data in MATLAB and next, pre-processing and preparation of data. Machine learning workflow for health monitoring. The neural network domain and implementation in MATLAB with explicit explanation of code and results. How predictive model can be improved using MATLAB? MATLAB code for an algorithm implementation, rather than for mathematical formula. Machine learning workflow for health monitoring. WHAT WILL YOU LEARN Pre-requisites to machine learning Finding natural patterns in data Building classification methods Data pre-processing in Python Building regression models Creating neural networks Deep learning WHO THIS BOOK IS FOR The book is basically meant for graduate and research students who find the algorithms of machine learning difficult to implement. We have touched all basic algorithms of machine learning in detail with a practical approach. Primarily, beginners will find this book more effective as the chapters are subdivided in a manner that they find the building and implementation of algorithms in MATLAB interesting and easy at the same time. Table of Contents _1. Ê Ê Pre-requisite to Machine Learning 2. Ê Ê An introduction to Machine Learning 3. Ê Ê Finding Natural Patterns in Data 4. Ê Ê Building Classification Methods 5. Ê Ê Data Pre-Processing in Python 6. Ê Ê Building Regression Models 7. Ê Ê Creating Neural Networks 8. Ê Ê Introduction to Deep Learning

Grokking Deep Learning

Grokking Deep Learning
Author :
Publisher : Simon and Schuster
Total Pages : 475
Release :
ISBN-10 : 9781638357209
ISBN-13 : 163835720X
Rating : 4/5 (09 Downloads)

Book Synopsis Grokking Deep Learning by : Andrew W. Trask

Download or read book Grokking Deep Learning written by Andrew W. Trask and published by Simon and Schuster. This book was released on 2019-01-23 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide

Fundamentals of Deep Learning

Fundamentals of Deep Learning
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 272
Release :
ISBN-10 : 9781491925560
ISBN-13 : 1491925566
Rating : 4/5 (60 Downloads)

Book Synopsis Fundamentals of Deep Learning by : Nikhil Buduma

Download or read book Fundamentals of Deep Learning written by Nikhil Buduma and published by "O'Reilly Media, Inc.". This book was released on 2017-05-25 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory
Author :
Publisher : Cambridge University Press
Total Pages : 473
Release :
ISBN-10 : 9781316519332
ISBN-13 : 1316519333
Rating : 4/5 (32 Downloads)

Book Synopsis The Principles of Deep Learning Theory by : Daniel A. Roberts

Download or read book The Principles of Deep Learning Theory written by Daniel A. Roberts and published by Cambridge University Press. This book was released on 2022-05-26 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms

Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms
Author :
Publisher : Nova Science Publishers
Total Pages : 367
Release :
ISBN-10 : 1685072070
ISBN-13 : 9781685072070
Rating : 4/5 (70 Downloads)

Book Synopsis Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms by : S. Sumathi

Download or read book Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms written by S. Sumathi and published by Nova Science Publishers. This book was released on 2021 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Advanced Decision Sciences Based on Deep Learning and Ensemble Learning Algorithms: A Practical Approach Using Python describes the deep learning models and ensemble approaches applied to decision-making problems. The authors have addressed the concepts of deep learning, convolutional neural networks, recurrent neural networks, and ensemble learning in a practical sense providing complete code and implementation for several real-world examples. The authors of this book teach the concepts of machine learning for undergraduate and graduate-level classes and have worked with Fortune 500 clients to formulate data analytics strategies and operationalize these strategies. The book will benefit information professionals, programmers, consultants, professors, students, and industry experts who seek a variety of real-world illustrations with an implementation based on machine learning algorithms"--

Machine Learning for Beginners

Machine Learning for Beginners
Author :
Publisher : BPB Publications
Total Pages : 457
Release :
ISBN-10 : 9789355515636
ISBN-13 : 9355515634
Rating : 4/5 (36 Downloads)

Book Synopsis Machine Learning for Beginners by : Dr. Harsh Bhasin

Download or read book Machine Learning for Beginners written by Dr. Harsh Bhasin and published by BPB Publications. This book was released on 2023-10-16 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to build a complete machine learning pipeline by mastering feature extraction, feature selection, and algorithm training KEY FEATURES ● Develop a solid understanding of foundational principles in machine learning. ● Master regression and classification methods for accurate data prediction and categorization in machine learning. ● Dive into advanced machine learning topics, including unsupervised learning and deep learning. DESCRIPTION The second edition of “Machine Learning for Beginners” addresses key concepts and subjects in machine learning. The book begins with an introduction to the foundational principles of machine learning, followed by a discussion of data preprocessing. It then delves into feature extraction and feature selection, providing comprehensive coverage of various techniques such as the Fourier transform, short-time Fourier transform, and local binary patterns. Moving on, the book discusses principal component analysis and linear discriminant analysis. Next, the book covers the topics of model representation, training, testing, and cross-validation. It emphasizes regression and classification, explaining and implementing methods such as gradient descent. Essential classification techniques, including k-nearest neighbors, logistic regression, and naive Bayes, are also discussed in detail. The book then presents an overview of neural networks, including their biological background, the limitations of the perceptron, and the backpropagation model. It also covers support vector machines and kernel methods. Decision trees and ensemble models are also discussed. The final section of the book provides insight into unsupervised learning and deep learning, offering readers a comprehensive overview of these advanced topics. By the end of the book, you will be well-prepared to explore and apply machine learning in various real-world scenarios. WHAT YOU WILL LEARN ● Acquire skills to effectively prepare data for machine learning tasks. ● Learn how to implement learning algorithms from scratch. ● Harness the power of scikit-learn to efficiently implement common algorithms. ● Get familiar with various Feature Selection and Feature Extraction methods. ● Learn how to implement clustering algorithms. WHO THIS BOOK IS FOR This book is for both undergraduate and postgraduate Computer Science students as well as professionals looking to transition into the captivating realm of Machine Learning, assuming a foundational familiarity with Python. TABLE OF CONTENTS Section I: Fundamentals 1. An Introduction to Machine Learning 2. The Beginning: Data Pre-Processing 3. Feature Selection 4. Feature Extraction 5. Model Development Section II: Supervised Learning 6. Regression 7. K-Nearest Neighbors 8. Classification: Logistic Regression and Naïve Bayes Classifier 9. Neural Network I: The Perceptron 10. Neural Network II: The Multi-Layer Perceptron 11. Support Vector Machines 12. Decision Trees 13. An Introduction to Ensemble Learning Section III: Unsupervised Learning and Deep Learning 14. Clustering 15. Deep Learning Appendix 1: Glossary Appendix 2: Methods/Techniques Appendix 3: Important Metrics and Formulas Appendix 4: Visualization- Matplotlib Answers to Multiple Choice Questions Bibliography