Learning Bayesian Networks

Learning Bayesian Networks
Author :
Publisher : Prentice Hall
Total Pages : 704
Release :
ISBN-10 : STANFORD:36105111872318
ISBN-13 :
Rating : 4/5 (18 Downloads)

Book Synopsis Learning Bayesian Networks by : Richard E. Neapolitan

Download or read book Learning Bayesian Networks written by Richard E. Neapolitan and published by Prentice Hall. This book was released on 2004 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.

Bayesian Networks

Bayesian Networks
Author :
Publisher : CRC Press
Total Pages : 275
Release :
ISBN-10 : 9781000410389
ISBN-13 : 1000410382
Rating : 4/5 (89 Downloads)

Book Synopsis Bayesian Networks by : Marco Scutari

Download or read book Bayesian Networks written by Marco Scutari and published by CRC Press. This book was released on 2021-07-28 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment
Author :
Publisher : Springer
Total Pages : 678
Release :
ISBN-10 : 9781493921256
ISBN-13 : 1493921258
Rating : 4/5 (56 Downloads)

Book Synopsis Bayesian Networks in Educational Assessment by : Russell G. Almond

Download or read book Bayesian Networks in Educational Assessment written by Russell G. Almond and published by Springer. This book was released on 2015-03-10 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian inference networks, a synthesis of statistics and expert systems, have advanced reasoning under uncertainty in medicine, business, and social sciences. This innovative volume is the first comprehensive treatment exploring how they can be applied to design and analyze innovative educational assessments. Part I develops Bayes nets’ foundations in assessment, statistics, and graph theory, and works through the real-time updating algorithm. Part II addresses parametric forms for use with assessment, model-checking techniques, and estimation with the EM algorithm and Markov chain Monte Carlo (MCMC). A unique feature is the volume’s grounding in Evidence-Centered Design (ECD) framework for assessment design. This “design forward” approach enables designers to take full advantage of Bayes nets’ modularity and ability to model complex evidentiary relationships that arise from performance in interactive, technology-rich assessments such as simulations. Part III describes ECD, situates Bayes nets as an integral component of a principled design process, and illustrates the ideas with an in-depth look at the BioMass project: An interactive, standards-based, web-delivered demonstration assessment of science inquiry in genetics. This book is both a resource for professionals interested in assessment and advanced students. Its clear exposition, worked-through numerical examples, and demonstrations from real and didactic applications provide invaluable illustrations of how to use Bayes nets in educational assessment. Exercises follow each chapter, and the online companion site provides a glossary, data sets and problem setups, and links to computational resources.

Advanced Methodologies for Bayesian Networks

Advanced Methodologies for Bayesian Networks
Author :
Publisher : Springer
Total Pages : 281
Release :
ISBN-10 : 9783319283791
ISBN-13 : 3319283790
Rating : 4/5 (91 Downloads)

Book Synopsis Advanced Methodologies for Bayesian Networks by : Joe Suzuki

Download or read book Advanced Methodologies for Bayesian Networks written by Joe Suzuki and published by Springer. This book was released on 2016-01-07 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the refereed proceedings of the Second International Workshop on Advanced Methodologies for Bayesian Networks, AMBN 2015, held in Yokohama, Japan, in November 2015. The 18 revised full papers and 6 invited abstracts presented were carefully reviewed and selected from numerous submissions. In the International Workshop on Advanced Methodologies for Bayesian Networks (AMBN), the researchers explore methodologies for enhancing the effectiveness of graphical models including modeling, reasoning, model selection, logic-probability relations, and causality. The exploration of methodologies is complemented discussions of practical considerations for applying graphical models in real world settings, covering concerns like scalability, incremental learning, parallelization, and so on.

Modeling and Reasoning with Bayesian Networks

Modeling and Reasoning with Bayesian Networks
Author :
Publisher : Cambridge University Press
Total Pages : 561
Release :
ISBN-10 : 9780521884389
ISBN-13 : 0521884381
Rating : 4/5 (89 Downloads)

Book Synopsis Modeling and Reasoning with Bayesian Networks by : Adnan Darwiche

Download or read book Modeling and Reasoning with Bayesian Networks written by Adnan Darwiche and published by Cambridge University Press. This book was released on 2009-04-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.

Innovations in Bayesian Networks

Innovations in Bayesian Networks
Author :
Publisher : Springer
Total Pages : 324
Release :
ISBN-10 : 9783540850663
ISBN-13 : 354085066X
Rating : 4/5 (63 Downloads)

Book Synopsis Innovations in Bayesian Networks by : Dawn E. Holmes

Download or read book Innovations in Bayesian Networks written by Dawn E. Holmes and published by Springer. This book was released on 2008-09-10 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.

Bayesian Learning for Neural Networks

Bayesian Learning for Neural Networks
Author :
Publisher : Springer Science & Business Media
Total Pages : 194
Release :
ISBN-10 : 9781461207450
ISBN-13 : 1461207452
Rating : 4/5 (50 Downloads)

Book Synopsis Bayesian Learning for Neural Networks by : Radford M. Neal

Download or read book Bayesian Learning for Neural Networks written by Radford M. Neal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.